Вертикальное строение атмосферы. Атмосфера земли и физические свойства воздуха Температура воздуха на разных высотах над землей

инверсия

повышение температуры воздуха с высотой вместо обычного понижения

Альтернативные описания

Возбужденное состояние вещества, в котором число частиц на более высоком энергетич. уровне превышает число частиц на более низком уровне (физика)

Изменение направления магнитного поля Земли на обратное, наблюдается через интервалы времени от 500 тысяч лет до 50 млн. лет

Изменение нормального положения элементов, расположение их в обратном порядке

Лингвистический термин, означающий изменение обычного порядка слов в предложении

Обратный порядок, обращение наоборот

Логическая операция «не»

Хромосомная перестройка, связанная с поворотом отдельных участков хромосомы на 180

Конформное преобразование евклидовой плоскости или пространства

Перестановка в математике

Драматургический прием, демонстрирующий исход конфликта в начале пьесы

В метрологии - аномальное изменение какого-либо параметра

Состояние вещества, при котором более высокие уровни энергии составляющих его частиц больше «населены» частицами, чем нижние

В органической химии - процесс расщепления сахарида

Изменение порядка слов в предложении

Изменение порядка слов для усиления выразительности

Белый след за самолетом

Изменение порядка слов

Обратный порядок элементов

Изменение обычного порядка слов в предложении с целью усилить выразительность речи

В первых разделах мы познакомились в общих чертах со структурой атмосферы по вертикали и с изменениями температуры с высотой.

Здесь рассмотрим некоторые интересные особенности режима температуры в тропосфере и в вышележащих сферах.

Температура и влажность воздуха в тропосфере. Тропосфера является наиболее интересной сферой, поскольку здесь формируются породообразующие процессы. В тропосфере, как уже указывалось в главе I, температура воздуха с высотой понижается в среднем на 6° при поднятии на каждый километр, или на 0,6° на 100 м. Эта величина вертикального градиента температуры наблюдается наиболее часто и определена как средняя из множества измерений. В действительности вертикальный градиент температуры в умеренных широтах Земли изменчив. Он зависит от сезонов года, времени суток, характера атмосферных процессов, а в нижних слоях тропосферы - главным образом от температуры подстилающей поверхности.

В теплое время года, когда прилегающий к поверхности земли слой воздуха достаточно нагрет, характерно понижение температуры с высотой. При сильном прогреве приземного слоя воздуха величина вертикального градиента температуры превышает даже 1° на каждые 100 м поднятия.

Зимой, при сильном охлаждении поверхности земли и приземного слоя воздуха, вместо понижения наблюдается повышение температуры с высотой, т. е. возникает инверсия температуры. Наиболее сильные и мощные инверсии наблюдаются в Сибири, особенно в Якутии зимой, где преобладает ясная и тихая погода, способствующая излучению и последующему охлаждению приземного слоя воздуха. Очень часто инверсия температуры здесь распространяется до высоты 2-3 км, а разность между температурой воздуха у поверхности земли и верхней границы инверсии нередко составляет 20-25°. Инверсии характерны и для центральных районов Антарктиды. Зимой они бывают в Европе, особенно в восточной ее части, Канаде и других районах. От величины изменения температуры с высотой (вертикального градиента температуры) в большой степени зависят условия погоды и виды движений воздуха по вертикальному направлению.

Устойчивая и неустойчивая атмосфера. Воздух в тропосфере нагревается от подстилающей поверхности. Температура воздуха изменяется с высотой и в зависимости от атмосферного давления. Когда это происходит без обмена тепла с окружающей средой, то такой процесс называется адиабатическим. Поднимающийся воздух производит работу за счет внутренней энергии, которая расходуется на преодоление внешнего сопротивления. Поэтому при поднятии воздух охлаждается, а при опускании нагревается.

Адиабатические изменения температуры происходят по сухоадиабатическому и влажноадиабатическому законам.

Соответственно различают и вертикальные градиенты изменения температуры с высотой. Сухоадиабатический градиент - это изменение температуры сухого или влажного ненасыщенного воздуха на каждые 100 м поднятия и опускания его на 1°, а влажноадиабатический градиент - это понижение температуры влажного насыщенного воздуха на каждые 100 м поднятия меньше чем на 1°.

При подъеме или опускании сухого, или ненасыщенного, воздуха температура его изменяется по сухоадиабатическому закону, т. е. соответственно падает или растет на 1° каждые 100 м. Эта величина не изменяется до тех пор, пока воздух при поднятии не достигает состояния насыщения, т. е. уровня конденсации водяного пара. Выше этого уровня вследствие конденсации начинает выделяться скрытая теплота парообразования, которая идет на нагревание воздуха. Это дополнительное тепло уменьшает величину охлаждения воздуха при подъеме. Дальнейшее поднятие насыщенного воздуха происходит уже по влажноадиабатическому закону, и температура его понижается не на 1° на 100 м, а меньше. Так как влагосодержание воздуха зависит от его температуры, то, чем выше температура воздуха, тем больше тепла выделяется при конденсации, а чем ниже температура, тем тепла меньше. Поэтому влажноадиабатический градиент в теплом воздухе меньше, чем в холодном. Например, при температуре у поверхности земли поднимающегося насыщенного воздуха +20° влажноадиабатический градиент в нижней тропосфере составляет 0,33-0,43° на 100 м, а при температуре минус 20° значения его колеблются от 0,78° до 0,87° на 100 м.

Влажноадиабатический градиент зависит и от давления воздуха: чем меньше давление воздуха, тем меньше при одной и той же начальной температуре влажноадиабатический градиент. Это происходит оттого, что при малом давлении плотность воздуха также меньше, следовательно, освободившаяся теплота конденсации идет на нагревание меньшей массы воздуха.

В таблице 15 приведены осредненные величины влажноадиабатического градиента при различной температуре и значениях

давления 1000, 750 и 500 мб, что приблизительно соответствует поверхности земли и высотам 2,5-5,5 км.

В теплое время года вертикальный градиент температуры в среднем равен 0,6-0,7° на 100 м поднятия.

Зная температуру у поверхности земли, можно вычислить приближенные значения температуры на различных высотах. Если, например, у поверхности земли температура воздуха равна 28°, то, приняв, что вертикальный градиент температуры в среднем равен 0,7° на 100 м или 7° на каждый километр, получим, что на высоте 4 км температура равна 0°. Температурный градиент зимой в средних широтах над сушей редко превышает 0,4-0,5° на 100 м: Нередки случаи, когда в отдельных слоях воздуха температура с высотой почти не изменяется, т. е. имеет место изотермия.

По величине вертикального градиента температуры воздуха можно судить о характере равновесия атмосферы - устойчивое или неустойчивое.

При устойчивом равновесии атмосферы массы воздуха не проявляют тенденции к вертикальным перемещениям. В этом случае если некоторый объем воздуха сместить вверх, то он возвратится в первоначальное положение.

Устойчивое равновесие бывает тогда, когда вертикальный градиент температуры ненасыщенного воздуха меньше сухоадиабатического градиента, а вертикальный градиент температуры насыщенного воздуха меньше влажноадиабатического. Если при этом условии небольшой объем ненасыщенного воздуха воздействием извне поднять на некоторую высоту, то как только прекратится действие внешней силы, этот объем воздуха возвратится в прежнее положение. Происходит это потому, что поднятый объем воздуха, затратив внутреннюю энергию на свое расширение, при подъеме охлаждался на 1° на каждые 100 м (по сухоадиабатическому закону). Но так как вертикальный градиент температуры окружающего воздуха был меньше сухоадиабатического, то оказалось, что поднятый объем воздуха на данной высоте имел более низкую температуру, чем окружающий воздух. Обладая большей плотностью в сравнении с плотностью окружающего воздуха, он должен опускаться, пока не достигнет первоначального состояния. Покажем это на примере.

Предположим, что у поверхности земли температура воздуха равна 20°, а вертикальный градиент температуры в рассматриваемом слое равен 0,7° на 100 м. При этой величине градиента температура воздуха на высоте 2 км будет равна 6° (рис. 19, а). Под воздействием внешней силы поднятый с поверхности земли на эту высоту объем ненасыщенного или сухого воздуха, охлаждаясь по сухоадиабатическому закону, т. е. на 1° на 100 м, охладится на 20° и примет температуру, равную 0°. Этот объем воздуха окажется на 6° холоднее окружающего воздуха, а значит, и тяжелее вследствие большей плотности. Поэтому он начнет

опускаться, стремясь достичь первоначального уровня, т. е. поверхности земли.

Аналогичный результат получится и в случае подъема насыщенного воздуха, если вертикальный градиент температуры окружающей среды меньше влажноадиабатического. Поэтому при устойчивом состоянии атмосферы в однородной массе воздуха не происходит бурное образование кучевых и кучево-дождевых облаков.

Наиболее устойчивое состояние атмосферы наблюдается при небольших величинах вертикального градиента температуры, и особенно при инверсиях, так как в этом случае над нижним холодным, а следовательно и тяжелым, воздухом располагается более теплый и легкий воздух.

При неустойчивом равновесии атмосферы поднятый с поверхности земли объем воздуха не возвращается в первоначальное положение, а сохраняет движение вверх до уровня, на котором выравниваются температуры поднимающегося и окружающего воздуха. Для неустойчивого состояния атмосферы характерны большие вертикальные градиенты температуры, что вызывается нагреванием нижних слоев воздуха. При этом прогретые внизу массы воздуха, как более легкие, устремляются вверх.

Предположим, например, что ненасыщенный воздух в нижних слоях до высоты 2 км стратифицирован неустойчиво, т. е. его температура

с высотой уменьшается на 1,2° на каждые 100 м, а выше воздух, став насыщенным, имеет устойчивую стратификацию, т. е. его температура понижается уже на 0,6° на каждые 100 м поднятия (рис. 19, б). Попав в такую среду, объем сухого ненасыщенного воздуха станет подниматься по сухоадиабатическому закону, т. е. охлаждаться на 1° на 100 м. Тогда, если его температура у поверхности земли 20°, то на высоте 1 км она станет равной 10°, в то время как температура окружающей среды 8°. Будучи теплее на 2°, а следовательно и легче, этот объем устремится выше. На высоте 2 км он будет теплее окружающей среды уже на 4°, так как его температура достигнет 0°, а температура окружающего воздуха равна -4°. Будучи снова легче, рассматриваемый объем воздуха продолжит свой подъем до высоты 3 км, где его температура станет равной температуре окружающей среды (-10°). После этого свободное поднятие выделенного объема воздуха прекратится.

Для определения состояния атмосферы используются аэрологические диаграммы. Это диаграммы с прямоугольными осями координат, по которым отложены характеристики состояния воздуха.

На аэрологических диаграммах нанесены семейства сухих и влажных адиабат, т. е. кривые, графически представляющие изменение состояния воздуха при сухоадиабатическом и влажноадиабатическом процессах.

На рисунке 20 представлена такая диаграмма. Здесь по вертикали изображены изобары, по горизонтали - изотермы (линии одинакового давления воздуха), наклонные сплошные линии - сухие адиабаты, наклонные прерывистые - влажные адиабаты, пунктирные - линии удельной влажности .На приведенной диаграмме нанесены кривые изменения температуры воздуха с высотой в двух пунктах в один и тот же срок наблюдения - 15 часов 3 мая 1965 г. Слева - кривая температуры по данным радиозонда, выпущенного в Ленинграде, справа - в Ташкенте. Из формы левой кривой изменения температуры с высотой следует, что в Ленинграде воздух устойчив. При этом до изобарической поверхности 500 мб вертикальный градиент температуры в среднем равен 0,55° на 100 м. В двух небольших слоях (на поверхностях 900 и 700 мб) зарегистрирована изотермия. Это указывает, что над Ленинградом на высотах 1,5-4,5 км находится атмосферный фронт, разделяющий холодные массы воздуха в нижних полутора километрах от теплового воздуха, расположенного выше. Высота уровня конденсации, определяемая положением температурной кривой по отношению к влажной адиабате, находится около 1 км (900 мб).

В Ташкенте воздух имел неустойчивую стратификацию. До высоты 4 км вертикальный градиент температуры был близок к адиабатическому, т. е. на каждые 100 м поднятия температура уменьшалась на 1°, а выше, до 12 км - больше адиабатического. Вследствие сухости воздуха облакообразования не происходило.

Над Ленинградом переход в стратосферу происходил на высоте 9 км (300 мб), а над Ташкентом значительно выше - около 12 км (200 мб).

При устойчивом состоянии атмосферы и достаточной влажности могут образоваться слоистые облака и туманы, а при неустойчивом состоянии и большом влагосодержании атмосферы возникает термическая конвекция, приводящая к образованию кучевых и кучево-дождевых облаков. С состоянием неустойчивости связано образование ливней, гроз, града, малых вихрей, шквала и т.

п. Так называемая «болтанка» самолета, т. е. броски самолета при полете, также вызывается неустойчивым состоянием атмосферы.

Летом обычна неустойчивость атмосферы после полудня, когда нагреваются близкие к земной поверхности слои воздуха. Поэтому ливневые дожди, шквалы и подобные опасные явления погоды чаще наблюдаются после полудня, когда вследствие разбивающейся неустойчивости возникают сильные вертикальные токи - восходящие и нисходящие движения воздуха. По этой причине самолеты, летающие днем на высоте 2-5 км над поверхностью земли, больше подвергаются «болтанке», чем при ночном полете, когда вследствие охлаждения приземного слоя воздуха устойчивость его увеличивается.

Влажность воздуха с высотой также уменьшаете. Почти половина всей влажности сосредоточена в первых полутора километрах атмосферы, а в первых пяти километрах содержится почти 9 / 10 всего водяного пара.

Для иллюстрации ежедневно наблюдаемого характера изменения температуры с высотой в тропосфере и нижней стратосфере в различных районах Земли на рисунке 21 приведены три кривые стратификации до высоты 22-25 км. Эти кривые построены по наблюдениям радиозондов в 3 часа дня: две в январе - Олекминск (Якутия) и Ленинград, а третья в июле - Тахта-Базар (Средняя Азия). Для первой кривой (Олекминск) характерно наличие приземной инверсии, характеризующейся повышением температуры от -48° у поверхности земли до -25° на высоте около 1 км. В этот срок тропопауза над Олекминском находилась на высоте 9 км (температура -62°). В стратосфере наблюдалось повышение температуры с высотой, значение которой на уровне 22 км приближалось к -50°. Вторая кривая, представляющая изменение температуры с высотой в Ленинграде, указывает на наличие небольшой приземной инверсии, затем изотермии в большом слое и понижение температуры в стратосфере. На уровне 25 км температура равна -75°. Третья кривая (Тахта-Базар) сильно отличается от северного пункта - Олекминска. Температура у поверхности земли выше 30°. Тропопауза находится на высоте 16 км, а выше 18 км происходит обычное для южного лета повышение температуры с высотой.

Предыдущая глава::: К содержанию::: Следующая глава

Солнечные лучи, падающие на поверхность земли, нагревают ее. Нагревание же воздуха происходит снизу вверх, т. е. от земной поверхности.

Передача тепла от нижних слоев воздуха в верхние происходит главным образом благодаря подъему теплого, нагретого воздуха вверх и опусканию холодного вниз. Этот процесс нагрева воздуха называется конвекцией .

В других случаях передача тепла вверх происходит благодаря динамической турбулентности . Так называются беспорядочные вихри, возникающие в воздухе вследствие трения его о земную поверхность при горизонтальном перемещении или при трении разных слоев воздуха между собой.

Конвекцию иногда называют термической турбулентностью. Конвекцию и турбулентность объединяют иногда общим названием - обмен .

Охлаждение нижних слоев атмосферы происходит иначе, чем нагревание. Земная поверхность непрерывно теряет тепло в окружающую ее атмосферу путем излучения не видимых для глаза тепловых лучей. Особенно сильно охлаждение становится после захода солнца (в ночные часы). Благодаря теплопроводности прилегающие к земле воздушные массы также постепенно охлаждаются, передавая затем это охлаждение вышележащим слоям воздуха; при этом наиболее интенсивно охлаждаются самые низкие слои.

В зависимости от солнечного нагрева температура нижних слоев воздуха изменяется в течение года и суток, достигая максимума около 13-14 часов. Суточный ход температуры воз духа в разные дни для одного и того же места непостоянен; его величина зависит главным образом от состояния погоды. Таким образом, изменения температуры нижних слоев воздуха связаны с изменениями температуры земной (подстилающей) поверхности.

Изменения температуры воздуха происходят также и от вертикальных перемещений его.

Известно, что воздух при расширении охлаждается, при сжатии - нагревается. В атмосфере при восходящем движении воздух, попадая в области более низкого давления, расширяется и охлаждается, и, наоборот, при нисходящем движении воздух, сжимаясь, нагревается. Изменения температуры воздуха при его вертикальных движениях в значительной степени обусловливают образование и разрушение облаков.

Температура воздуха с высотой обычно понижается. Изменение средней температуры с высотой над Европой летом и зимой приведено в таблице «Средние температуры воздуха над Европой».

Уменьшение температуры с высотой характеризуется вертикальным температурным градиентом . Так называется изменение температуры на каждые 100 м высоты. Для технических и аэронавигационных расчетов вертикальный температурный градиент принимают равным 0,6. Нужно иметь в виду, что это величина непостоянная. Может случиться, что в каком-либо слое воздуха температура с высотой не будет изменяться.

Такие слои называются слоями изотермии .

Весьма часто в атмосфере наблюдается явление, когда в некотором слое температура с высотой даже возрастает. Такие слои атмосферы называются слоями инверсии . Инверсии возникают от различных причин. Одной из них является охлаждение подстилающей поверхности путем излучения в ночное или зимнее время при ясном небе. Иногда, в случае штиля или слабого ветра, приземные слон воздуха также охлаждаются и становятся холоднее вышележащих слоев. В результате на высоте воздух оказывается более теплым, чем внизу. Такие инверсии называются радиационными . Сильные радиационные инверсии наблюдаются обычно над снежным покровом и особенно в горных котловинах, я также при штиле. Слои инверсии простираются до высоты нескольких десятков или сотен метров.

Инверсии возникают также вследствие перемещения (адвекции) теплого воздуха на холодную подстилающую поверхность. Это так называемые адвективные инверсии . Высота этих инверсии - несколько сот метров.

Кроме этих инверсий, наблюдаются инверсии фронтальные и инверсии сжатия. Фронтальные инверсии возникают при натекании теплых воздушных масс на более холодные. Инверсии сжатия возникают при опускании воздуха из верхних слоев атмосферы. При этом опускающийся воздух нагревается иногда настолько сильно, что нижележащие слои его оказываются более холодными.

Инверсии температуры наблюдаются на различных высотах тропосферы, наиболее часто-на высотах около 1 км. Толщина инверсионного слоя может колебаться от нескольких десятков, до нескольких сотен метров. Разность температур при инверсии может достигать 15-20°.

Слои инверсий играют большую роль в погоде. Вследствие того что воздух в слое инверсии теплее нижележащего слоя, воздух нижних слоев не может подняться. Следовательно, слои инверсий задерживают вертикальные движения в нижележащем слое воздуха. При полете под слоем инверсии обычно наблюдается рему («болтанка»). Выше же слоя инверсии полет самолета обычно происходит нормально. Под слоями инверсий развиваются так называемые волнистые облака.

Температура воздуха оказывает влияние на технику пилотирования и эксплуатацию материальной части. При температурах у земли ниже -20° застывает масло, поэтому заливать его приходится в подогретом состоянии. В полете при низких температурах интенсивно охлаждается вода в охлаждающей системе мотора. При повышенных же температурах (выше+30°) может получиться перегрев мотора. Температура воздуха влияет также и на работоспособность экипажа самолета. При низкой температуре, доходящей в стратосфере до -56°, требуется специальное обмундирование для экипажа.

Температура воздуха имеет весьма большое значение для прогноза погоды.

Измерение температуры воздуха во время полета на самолете производится при помощи электрических термометров, прикрепляемых на самолете. При измерении температуры воздуха необходимо иметь в виду, что вследствие больших скоростей современных самолетов термометры дают ошибки. Большие скорости самолетов вызывают повышение температуры самого термометра, обусловленное трением его резервуара о воздух и влиянием нагрева вследствие сжатия воздуха. Нагревание от трения с повышением скорости полета самолета возрастает и выражается следующими величинами:

Скорость в км/час …………. 100 200 З00 400 500 600

Нагревание от трения ……. 0°,34 1°,37 3°.1 5°,5 8°,6 12°,б

Нагревание же от сжатия выражается следующими величинами:

Скорость в км/час …………. 100 200 300 400 500 600

Нагревание от сжатия ……. 0°,39 1°,55 3°,5 5°,2 9°,7 14°,0

Искажения показаний термометра, установленного на самолете, при полете в облаках на 30 % меньше приведенных выше величин, вследствие того что часть тепла, возникающего при трении и сжатии, расходуется на испарение воды, сконденсированной в воздухе в виде капель.

Температура воздуха. Единицы измерения, изменение температуры с высотой. Инверсия, изотермия, Виды инверсий, Адиабатический процесс.

Температура воздуха — это величина, характеризующая её тепловое состояние. Она выражается или в градусах Цельсия (ºС по стоградусной шкале или в Кельвинах (К) по абсолютной шкале. Переход от температуры в Кельвинах к температуре в градусах Цельсия выполняется по формуле

t = T-273º

Для нижнего слоя атмосферы (тропосферы) характерно понижение температуры с высотой, составляющее 0,65ºС на 100м.

Это изменение температуры с высотой на 100м называется вертикальным градиентом температуры. Зная температуру у поверхности земли и используя значение вертикального градиента можно вычислить приблизительную температуру на любой высоте (например, при температуре у поверхности земли +20ºС на высоте 5000м температура будет равна:

20º- (0,65*50) = — 12.,5.

Вертикальный градиент γ не является постоянной величиной и зависит от типа воздушной массы, времени суток и сезона года, характера подстилающей поверхности и других причин. При понижении температуры с высотой γ считается положительным, если температура с высотой не изменяется, то γ= 0 слои называются изотермическими . Слои атмосферы, где происходит повышение температуры с высотой (γ < 0), называются инверсионными . В зависимости от величины вертикального градиента температуры состояние атмосферы может быть устойчивым, неустойчивым или безразличным по отношению к сухому (не насыщенному) или насыщенному воздуху.

Понижение температуры воздуха при его подъёме происходит адиабатически , то есть без теплообмена воздушных частиц с окружающей средой. Если воздушная частица поднимается вверх, то имеет место расширение её объёма, при этом внутренняя энергия частицы уменьшается.

Если частица опускается, при этом она сжимается и её внутренняя энергия увеличивается. Из этого следует, что при восходящем движении объёма воздуха температура его понижается, а при нисходящем — повышается. Эти процессы играют важную роль в образовании и развитии облаков.

Горизонтальный градиент — это температура выраженная в градусах на расстоянии 100км. При переходе из холодной ВМ в теплую и из тёплой в холодную может превышать 10º на 100км.

Виды инверсий.

Инверсии являются задерживающими слоями, они гасят вертикальные движения воздуха, под ними происходит скопление водяного пара или других твердых частиц, ухудшающих видимость, образование тумана и различных форм облаков. Слои инверсий являются тормозящими слоями и для горизонтальных движений воздуха. Во многих случаях эти слои являются поверхностями разрыва ветра. Инверсии в тропосфере могут наблюдаться у поверхности земли и на больших высотах. Мощным слоем инверсии является тропопауза.

В зависимости от причин возникновения различают следующие типы инверсий:

1. Радиационные – результат охлаждения приземного слоя воздуха, обычно в ночное время.

2. Адвективные – при перемещении теплого воздуха на холодную подстилающую поверхность.

3. Сжатия или опускания – формируются в центральных частях малоподвижных антициклонов.

Солнечные лучи, падающие на поверхность земли, нагревают ее. Нагревание же воздуха происходит снизу вверх, т. е. от земной поверхности.

Передача тепла от нижних слоев воздуха в верхние происходит главным образом благодаря подъему теплого, нагретого воздуха вверх и опусканию холодного вниз. Этот процесс нагрева воздуха называется конвекцией .

В других случаях передача тепла вверх происходит благодаря динамической турбулентности . Так называются беспорядочные вихри, возникающие в воздухе вследствие трения его о земную поверхность при горизонтальном перемещении или при трении разных слоев воздуха между собой.

Конвекцию иногда называют термической турбулентностью. Конвекцию и турбулентность объединяют иногда общим названием - обмен .

Охлаждение нижних слоев атмосферы происходит иначе, чем нагревание. Земная поверхность непрерывно теряет тепло в окружающую ее атмосферу путем излучения не видимых для глаза тепловых лучей. Особенно сильно охлаждение становится после захода солнца (в ночные часы). Благодаря теплопроводности прилегающие к земле воздушные массы также постепенно охлаждаются, передавая затем это охлаждение вышележащим слоям воздуха; при этом наиболее интенсивно охлаждаются самые низкие слои.

В зависимости от солнечного нагрева температура нижних слоев воздуха изменяется в течение года и суток, достигая максимума около 13-14 часов. Суточный ход температуры воз духа в разные дни для одного и того же места непостоянен; его величина зависит главным образом от состояния погоды. Таким образом, изменения температуры нижних слоев воздуха связаны с изменениями температуры земной (подстилающей) поверхности.

Изменения температуры воздуха происходят также и от вертикальных перемещений его.

Известно, что воздух при расширении охлаждается, при сжатии - нагревается. В атмосфере при восходящем движении воздух, попадая в области более низкого давления, расширяется и охлаждается, и, наоборот, при нисходящем движении воздух, сжимаясь, нагревается. Изменения температуры воздуха при его вертикальных движениях в значительной степени обусловливают образование и разрушение облаков.

Температура воздуха с высотой обычно понижается. Изменение средней температуры с высотой над Европой летом и зимой приведено в таблице "Средние температуры воздуха над Европой".

Уменьшение температуры с высотой характеризуется вертикальным температурным градиентом . Так называется изменение температуры на каждые 100 м высоты. Для технических и аэронавигационных расчетов вертикальный температурный градиент принимают равным 0,6. Нужно иметь в виду, что это величина непостоянная. Может случиться, что в каком-либо слое воздуха температура с высотой не будет изменяться. Такие слои называются слоями изотермии .

Весьма часто в атмосфере наблюдается явление, когда в некотором слое температура с высотой даже возрастает. Такие слои атмосферы называются слоями инверсии . Инверсии возникают от различных причин. Одной из них является охлаждение подстилающей поверхности путем излучения в ночное или зимнее время при ясном небе. Иногда, в случае штиля или слабого ветра, приземные слон воздуха также охлаждаются и становятся холоднее вышележащих слоев. В результате на высоте воздух оказывается более теплым, чем внизу. Такие инверсии называются радиационными . Сильные радиационные инверсии наблюдаются обычно над снежным покровом и особенно в горных котловинах, я также при штиле. Слои инверсии простираются до высоты нескольких десятков или сотен метров.

Инверсии возникают также вследствие перемещения (адвекции) теплого воздуха на холодную подстилающую поверхность. Это так называемые адвективные инверсии . Высота этих инверсии - несколько сот метров.

Кроме этих инверсий, наблюдаются инверсии фронтальные и инверсии сжатия. Фронтальные инверсии возникают при натекании теплых воздушных масс на более холодные. Инверсии сжатия возникают при опускании воздуха из верхних слоев атмосферы. При этом опускающийся воздух нагревается иногда настолько сильно, что нижележащие слои его оказываются более холодными.

Инверсии температуры наблюдаются на различных высотах тропосферы, наиболее часто-на высотах около 1 км. Толщина инверсионного слоя может колебаться от нескольких десятков, до нескольких сотен метров. Разность температур при инверсии может достигать 15-20°.

Слои инверсий играют большую роль в погоде. Вследствие того что воздух в слое инверсии теплее нижележащего слоя, воздух нижних слоев не может подняться. Следовательно, слои инверсий задерживают вертикальные движения в нижележащем слое воздуха. При полете под слоем инверсии обычно наблюдается рему («болтанка»). Выше же слоя инверсии полет самолета обычно происходит нормально. Под слоями инверсий развиваются так называемые волнистые облака.

Температура воздуха оказывает влияние на технику пилотирования и эксплуатацию материальной части. При температурах у земли ниже -20° застывает масло, поэтому заливать его приходится в подогретом состоянии. В полете при низких температурах интенсивно охлаждается вода в охлаждающей системе мотора. При повышенных же температурах (выше+30°) может получиться перегрев мотора. Температура воздуха влияет также и на работоспособность экипажа самолета. При низкой температуре, доходящей в стратосфере до -56°, требуется специальное обмундирование для экипажа.

Температура воздуха имеет весьма большое значение для прогноза погоды.

Измерение температуры воздуха во время полета на самолете производится при помощи электрических термометров, прикрепляемых на самолете. При измерении температуры воздуха необходимо иметь в виду, что вследствие больших скоростей современных самолетов термометры дают ошибки. Большие скорости самолетов вызывают повышение температуры самого термометра, обусловленное трением его резервуара о воздух и влиянием нагрева вследствие сжатия воздуха. Нагревание от трения с повышением скорости полета самолета возрастает и выражается следующими величинами:

Скорость в км/час............. 100 200 З00 400 500 600

Нагревание от трения....... 0°,34 1°,37 3°.1 5°,5 8°,6 12°,б

Нагревание же от сжатия выражается следующими величинами:

Скорость в км/час............. 100 200 300 400 500 600

Нагревание от сжатия....... 0°,39 1°,55 3°,5 5°,2 9°,7 14°,0

Искажения показаний термометра, установленного на самолете, при полете в облаках на 30 % меньше приведенных выше величин, вследствие того что часть тепла, возникающего при трении и сжатии, расходуется на испарение воды, сконденсированной в воздухе в виде капель.

В тропосфере температура воздуха с высотой понижается, как отмечалось, в среднем на 0,6 ºС на каждые 100 м высоты. Однако в приземном слое распределение температуры может быть различным: она может и уменьшаться, и увеличиваться, и оставаться постоянной. Представление о распределении температуры с высотой дает вертикальный градиент температуры (ВГТ):

Значение ВГТ в приземном слое зависит от погодных условий (в ясную погоду он больше, чем в пасмурную), времени года (летом больше, чем зимой) и времени суток (днем больше, чем ночью). Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Над влажной почвой резко снижается ВГТ в приземном слое, а над оголенной почвой (паровое поле) ВГТ больше, чем над густым посевом или лугом. Это обусловлено различиями в температурном режиме этих поверхностей.

Изменение температуры воздуха с высотой определяет знак ВГТ: если ВГТ > 0, то температура уменьшается с удалением от деятельной поверхности, что обычно бывает днем и летом; если ВГТ = 0, то температура с высотой не меняется; если ВГТ < 0, то температура увеличивается с высотой и такое распределение температуры называют инверсией.

В зависимости от условий образования инверсий в приземном слое атмосферы их подразделяют на радиационные и адветивные.

1. Радиационные инверсии возникают при радиационном выхолаживании земной поверхности. Такие инверсии в теплый период года образуются ночью, а зимой наблюдаются также и днем. Поэтому радиационные инверсии подразделяют на ночные (летние) и зимние.

2. Адвективные инверсии образуются при адвекции (перемещении) теплого воздуха на холодную подстилающую поверхность, которая охлаждает прилегающие к ней слои надвигающегося воздуха. К этим инверсиям относят также и снежные инверсии. Они возникают при адвекции воздуха, имеющего температуру выше 0°С, на поверхность, покрытую снегом. Понижение температуры в самом нижнем слое в этом случае связано с затратами тепла на таяние снега.

Измерение температуры воздуха

На метеорологических станциях термометры устанавливают в особой будке, называемой психрометрической будкой, стенки которой жалюзийные. В такую будку не проникают лучи Солнца, но в то же время воздух имеет свободный доступ в нее.

Термометры устанавливают на штативе так, чтобы резервуары располагались на высоте 2 м от деятельной поверхности.

Срочную температуру воздуха измеряют ртутным психрометрическим термометром ТМ-4, который устанавливают вертикально. При температуре ниже -35°С используют низкоградус­ный спиртовой термометр ТМ-9.

Экстремальные температуры измеряют по максимальному ТМ-1 и минимальному ТМ-2 термометрам, которые укладывают горизонтально.

Для непрерывной записи температуры воздуха служит термограф М-16А, который помещают в жалюзийной будке для самописцев. В зависимости от скорости вращения барабана термографы бывают суточные и недельные.

В посевах и насаждениях температуру воздуха измеряют, не нарушая растительный покров. Для этого используют аспирационный психрометр.

В августе месяце мы отдыхали на Кавказе у моей однокурсницы Нателлы. Нас угощали вкуснейшим шашлыком и домашним вином. Но больше всего мне запомнилась экскурсия в горы. Внизу было очень тепло, но вверху - просто холодно. Я задумалась о том, почему с высотой температура воздуха понижается. При подъеме на Эльбрус это было очень заметно.

Изменение температуры воздуха с высотой

Пока мы поднимались по горному маршруту, проводник Зураб объяснял нам причины понижения температуры воздуха с высотой.

Воздух в атмосфере нашей планеты находится в поле тяготения. Поэтому его молекулы постоянно перемешиваются. При движении вверх молекулы расширяются, и температура падает, при движении вниз, наоборот, повышается.

Это видно, когда самолет поднимается на высоту, и в салоне сразу становится холодно. Я до сих пор помню свой первый перелет в Крым. Запомнила я его именно благодаря этой разнице температуры внизу и на высоте. Мне казалось, что мы просто висим в холодном воздухе, а внизу карта местности.


Температура воздуха зависит от температуры земной поверхности. Воздух прогревается от нагретой солнцем Земли.

Почему с высотой понижается температура в горах

О том, что в горах холодно и тяжело дышать, знают все. Я это испытала на себе в походе на Эльбрус.

Такие явления имеют несколько причин.

  1. В горах воздух разрежен, поэтому плохо прогревается.
  2. Лучи солнца попадают на наклонную поверхность горы и прогревают ее гораздо меньше, чем землю на равнине.
  3. Белые шапки снега на горных вершинах отражают лучи солнца, и это тоже понижает температуру воздуха.


Куртки нам очень пригодились. В горах, несмотря на август месяц, было холодно. У подножья горы раскинулись зеленые луга, а вверху лежал снег. Местные пастухи и овцы давно приспособились к жизни в горах. Их не смущает холодная температура, а их ловкости передвижения по горным тропинкам можно только позавидовать.


Так наша поездка на Кавказ оказалась еще и познавательной. Мы прекрасно отдохнули и на личном опыте узнали, как с высотой температура воздуха понижается.

Задача:

Известно, что на высоте 750 метров над уровнем моря температура составляет +22 о С. Определите температуру воздуха на высоте:

а) 3500 метров над уровнем моря

б) 250 метров над уровнем моря

Решение:

Нам известно, что при изменении высоты на 1000 метров (1 км) температура воздуха изменяется на 6 о С. Причём, при увеличении высоты температура воздуха понижается, а при уменьшении - повышается.

а) 1. Определим разницу высот: 3500 м -750 м = 2750 м = 2,75 км

2. Определим разницу температур воздуха: 2,75 км × 6 о С = 16,5 о С

3. Определим температуру воздуха на высоте 3500 м: 22 о С - 16,5 о С = 5,5 о С

Ответ: на высоте 3500 м температура воздуха составляет 5,5 о С.

б) 1. Определим разницу высот: 750 м -250 м = 500 м = 0,5 км

2. Определим разницу температур воздуха: 0,5 км × 6 о С = 3 о С

3. Определим температуру воздуха на высоте 250 м: 22 о С + 3 о С = 25 о С

Ответ: на высоте 250 м температура воздуха составляет 25 о С.

2. Определение атмосферного давления в зависимости от высоты

Задача:

Известно, что на высоте 2205 метров над уровнем моря атмосферное давление составляет 550 мм ртутного столба. Определите атмосферное давление на высоте:

а) 3255 метров над уровнем моря

б) 0 метров над уровнем моря

Решение:

Нам известно, что при изменении высоты на 10,5 метров атмосферное давление изменяется на 1 мм рт. ст. Причём, при увеличении высоты атмосферное давление понижается, а при уменьшении - повышается.

а) 1. Определим разницу высот: 3255 м - 2205 м = 1050 м

2. Определим разницу атмосферного давления: 1050 м: 10,5 м = 100 мм рт.ст.

3. Определим атмосферное давление на высоте 3255 м: 550 мм рт.ст. - 100 мм рт.ст. = 450 мм рт.ст.

Ответ: на высоте 3255 м атмосферное давление составляет 450 мм ртутного столба..

б) 1. Определим разницу высот: 2205 м - 0 м = 2205 м

2. Определим разницу атмосферного давления: 2205 м: 10,5 м = 210 мм рт. ст.

3. Определим атмосферное давление на высоте 0 м: 550 мм рт.ст. + 210 мм рт. ст. = 760 мм рт. ст.

Ответ: на высоте 0 м атмосферное давление составляет 760 мм ртутного столба.

3. Шкала Бофорта

(шкала скорости ветра)

Баллы

Скорость ветра

Характеристика ветра

Действие ветра

32,7 и более

умеренный

очень крепкий

сильный шторм

жестокий шторм

Дым поднимается вертикально, листья на деревьях неподвижны

Лёгкое движение воздуха, дым слегка наклоняется

Движение воздуха ощущается лицом, листья шелестят

Колышутся листья и тонкие ветки на деревьях

Вершины деревьев гнутся, поднимается пыль

Колеблются ветки и тонкие стволы деревьев

Качаются толстые ветки, гудят телефонные провода

Раскачиваются стволы деревьев, идти против ветра тяжело

Раскачиваются большие деревья, ломаются небольшие ветви

Небольшие повреждения зданий, ломаются толстые ветви

Деревья ломаются и вырываются с корнем, повреждения зданий

Большие разрушения

Опустошительные разрушения