Внешние силы, создающие рельеф. Изменение рельефа земли реками Антропогенные формы рельефа

Если мы с вами задумаемся, какая же все-таки сила руководит всеми природными процессами на поверхности Земли, то несомненно обнаружим, что в основе всего происходящего находится наше неутомимое светило - Солнце.

Солнце руководит воздухом, водой и всеми растениями на Земле. Если бы не их деятельность, то поверхность нашей планеты имела бы другой вид.

Каковы причины

Взять, к примеру, каменную скалу. Днём солнечные лучи разогревают ее поверхность, а ночью она быстро остывает. Вещество из которого состоит эта скала подвергается расширению и сжатию. Со временем на поверхности скалы появляются трещины. Потом они углубляются и от монолитной глыбы откалываются большие и маленькие куски. Ветер сдувает эти обломки. Вода проникает в образовавшиеся щели и ещё больше разрушает камень.

Но разрушение горных пород достаточно долгий процесс. Значительно быстрее изменяется облик пустыни. Здесь почти безраздельно хозяйничает ветер. После песчаной бури вид пустыни полностью изменяется. За считанные часы ветер переносит огромные массы песка с одного места на другое.

В тех местах где нет гор или пустынь хозяйничают реки и ручейки. Они, двигаясь по земной поверхности, размывают ее и образуют речные Долины, овраги, лощины и балки.

В прериях Великих равнин Соединенных Штатов Америки есть огромные живописные места. Здесь воздух и вода прорыли в земной поверхности огромные многокилометровые проходы, которые называют каньонами. Глубина некоторых каньонов достигает нескольких сотен метров.

Стены таких ущелий очень крутые. Они состоят из мягких известняковых пород. Эти стены не нависают над проходом в виде козырька, потому что не выдерживают своей тяжести и сразу обваливаются.

Как бы странно это ни звучало, но на разрушение горных пород влияют и некоторые растения. Ветер разносит незаметные глазу споры лишайников повсюду, даже в самые маленькие трещины скал. Зеленые лишайники глубоко прорастают в горную породу, постепенно разъедая его.

Проходят века, и всё эти природные силы неузнаваемо изменяют поверхность горного хребта, утеса, отдельного камня.

Реки и их притоки - водные артерии нашей планеты. Они уносят избыток воды с суши в океан и играют активную роль в непрекращающемся преобразовании рельефа Земли.

Амазонка - самая полноводная река на Земле. Каждую секунду она выносит в Атлантический океан около 200 тыс. м³ воды. Ее питают семнадцать больших притоков, а площадь водосборного бассейна, занимающего почти всю северную часть Южной Америки, составляет примерно 7 млн км². Длина Амазонки около 7000 км, ширина часто более 10 км. Река судоходна на протяжении 1600 км от устья.

Река рекордов

Амазонка - центральная артерия, от которой ответвляются притоки, сами по себе очень крупные реки. Истоки многих из них находятся в Андах (Риу-Негру, Пурус, Мадейра). Другие текут с Бразильского плоскогорья, расположенного на юге (Тапажос, Шингу), и меньшая часть — с севера, с Гвианского плоскогорья. При слиянии реки с одним или несколькими притоками, например с Риу-Негру, объем переносимой воды настолько увеличивается, что образуется некое подобие внутреннего моря.

Амазонка течет по обе стороны от экватора, в регионе с влажным, жарким климатом, где выпадает от 1500 до 3000 мм осадков в год. Водотоки со склонов Анд, питающиеся за счет таяния снегов, пополняются водами поверхностного стока, поскольку почвы дождевых экваториальных лесов не в состоянии впитывать весь объем атмосферных осадков. Водотоки сливаются с мелкими реками, а те несут свои воды в главную артерию. Впадая в океан, Амазонка достигает в устье ширины 60 км и образует эстуарий со множеством островов.

Изменение рельефа

Текучие воды не только выносят с суши в море избытки воды. На своем пути они также видоизменяют рельеф планеты, сдержанно или неистово, плавно или прерывисто. В этом процессе задействованы огромные объемы переносимых горных пород, достигающие ежегодно сотен миллионов тонн. Даже самые спокойные с виду реки ни на миг не прекращают своей деятельности, перенося растворенные вещества, например бикарбонат кальция, вымываемый из разрушающихся известняков.

Вода переносит рыхлый, несцементированный материал: песок, глину и почву. В результате реки часто приобретают характерный цвет. Вода одних притоков Амазонки, например Риу-Негру, кажется темной из-за присутствия в ней оксидов железа и органики. Воды других изобилуют алевритом и кажутся белесыми (Мадейра). Вниз по течению от места слияния с Риу-Негру воды Амазонки долго текут двумя несмешивающимися разноцветными потоками.

Трудный путь

Равнинные реки экваториального пояса переносят лишь мелкие взвешенные частицы и не способны эффективно разрушать прочные коренные породы, выстилающие их дно. Поэтому русла африканских рек изобилуют порогами и водопадами, образующимися там, где породы оказываются особенно устойчивы к размыву.

Эрозионные процессы наиболее заметны в горных районах, где значительны уклоны поверхности. Русла горных рек зачастую усыпаны крупными обломками пород, которые в периоды полной воды движутся, скользят, переворачиваются и дробятся при трении друг о друга. Когда водоток выходит на равнину, весь этот обломочный материал откладывается в виде веерообразных скоплений — конусов выноса. При впадении рек в озера происходит то же самое: образуется небольшая дельта — первый этап формирования озерной котловины.

Крупномасштабная работа

За многие тысячи лет водотоки протачивают в породах врезанные долины, ущелья и каньоны. Долины с крутыми склонами обычно формируются в твердых породах, которые вода способна разрушать только с помощью истирающего (абразивного) материала — песка, гравия и гальки. Вращательное движение воды в водоворотах приводит к образованию в русле естественных углублений, называемых исполиновыми котлами.

Сходным образом реки подмывают крутые берега и, расширяя русло, создают живописные излучины. Однако для дальнейшего расширения речных долин необходимо вмешательство других механизмов эрозионного процесса. Выветривание, дробление и оползни постепенно сглаживают созданные водотоком формы.

В плену или на свободе

Реки, текущие по обширным аллювиальным равнинам, свободнее в выборе конфигурации русла, чем реки, запертые в узких теснинах. Равнинные реки нередко меняют путь, произвольно меандрируя (блуждая) в пределах главного направления, как, например, река Окаванго в Ботсване.

Иногда реки еще резче меняют курс. В результате смещения земляных масс и изменения уровня воды реки захватывают соседние водотоки и направляют их в свое русло. Так, река Мозель во Франции, некогда впадавшая в Маас, теперь стала притоком реки Мерт.

Дельты

Дельты рек — неустойчивые сооружения, непрекращающееся переустройство которых основывается как на аккумуляции переносимых реками осадков, так и на выносе их наступающим морем. Но удача в битве между морем и сушей всегда благоволит морю.

Район нильской дельты в Египте площадью 24 тыс. км2 — один из самых густонаселенных в мире, как и дельта легендарного Ганга, текущего в Индии. Люди с давних пор селились в этих низменных, плодородных районах. Однако граница между стихиями воды и суши изменчива. Из-за половодий реки нередко меняют русла. Старые русла, оставаясь выше, пересыхают, образуя новые озера и болота. Даже там, где море уже отступило, участки суши не защищены от вторжения воды.

Происхождения слова «дельта» тесно связано с Нилом. Такое название низовьям Нила дал Геродот в V в. до н. э., поскольку устье реки по форме похоже на перевернутую заглавную букву Д греческого алфавита. С тех пор этим термином стали обозначать сложенную речными наносами низменность в устье реки, впадающей в море или озеро. У Роны даже две дельты: одна, небольшая, сформировалась при впадении реки в Женевское озеро, другая, намного крупнее, — в Камарге, при впадении в Средиземное море.

Дельты могут иметь разную форму. Одни реки, например Миссисипи, разветвляются на несколько рукавов, так что их дельта напоминает гусиную лапу, другие, такие, как Эбро в Испании или По в Италии, образуют дуги. Разнообразие форм дельты определяется как созидательной работой реки, так и противостоянием моря, течения которого либо препятствуют осадконакоплению, либо помогают намывать песчаные косы, как это происходит в Венеции. Так, перемещение морским течением отложений реки По привело к образованию в северной части дельты берегового вала, отрезавшего Венецианскую лагуну от моря. Изучение смещений литоральной зоны показывает, что форма береговой линии, русел рек и их притоков меняется на протяжении и нескольких тысячелетий. Архивные документы позволяют проследить перемещения Роны в районе Камарга и измерить их в километрах.

«Многократная» дельта

Дельта может быть сформирована несколькими дельтами, расположенными друг за другом, как, например, дельта Миссисипи. Пройдя путь длиной более 6000 км, река откладывает в Мексиканском заливе наносы, годовой объем которых составляет около 20 тонн. Неудивительно, что река транспортирует столько материала, ведь она собирает воду более чем с трети территории Соединенных Штатов и в нее впадают такие крупные реки, как Миссури, Арканзас, Ред-Ривер. За 5000 лет в устье Миссисипи сформировалось шесть смыкающихся дельт, образовавших одну в форме гусиной лапы.

Качество материалов

Чтобы победить в сражении с морем и сформировать дельту, река должна отложить огромный объем аллювия. Не менее важен и характер переносимого материала. В бассейне Амазонки преобладает химическое выветривание, поэтому здесь мало песка и гравия. Хотя годовой твердый сток реки составляет около 1,3 млн тонн в день, в нем преобладают тонкодисперсные частицы, которые уносятся прибрежным течением на север. Вот почему при впадении в Атлантический океан Амазонка образует огромный эстуарий, а не дельту. Однако активная вырубка лесов в регионе приводит к уничтожению надпочвенного покрова и способствует эрозии. Это может изменить состав транспортируемого материала, направление русла, скорость течения и в конечном счете привести к превращению эстуария в дельту.

Несмотря на то что в других регионах объем и качество переносимых осадков достаточны для сохранения дельты, строительство плотин и электростанций на реках и их притоках может сократить осадконакопление и привести к победе моря.

Voted Thanks!

Возможно Вам будет интересно:


Само выветривание не приводит к образованию форм рельефа, а лишь превращает твёрдые породы в рыхлые и подготавливает материал к передвижению. Результатом такого передвижения являются различные формы рельефа.

Действие силы тяжести

Под действием силы тяжести породы, разрушенные , перемещаются но поверхности Земли с возвышенных участков в более низкие. Каменные глыбы, щебень, песок часто устремляются вниз с крутых горных склонов, порождая обвалы и осыпи.

Под действием силы тяжести возникают оползни и сели . Они переносят огромные массы пород. Оползни представляют собой сползание масс горных пород вниз по склону. Они образуются по берегам водоёмов, на склонах холмов и гор после сильных дождей или таяния снега. Верхний рыхлый слой горных пород становится тяжелее при насыщении водой и сползает по нижнему, не пропускающему воду слою. Ливневые дожди и быстрое таяние снегов также вызывают в горах грязекаменные потоки сели. Они с разрушительной силой движутся вниз по склону, снося всё на своём пути. Оползни и сели приводят к авариям и гибели людей.

Деятельность текучих вод

Важнейший преобразователь рельефа - движущаяся вода, которая выполняет большую разрушительную и созидательную работу. Реки прорезают широкие речные долины на равнинах, глубокие каньоны и ущелья в горах. Небольшие водные потоки создают на равнинах овражно-балочный рельеф.

Текучие поды не только создают углубления на поверхности, но и захватывают обломки горных пород, переносят их и откладывают во впадинах или и собственных долинах. Так из речных наносов вдоль рек формируются плоские равнины

Карст

В тех районах, где близко к земной поверхности залегают легкорастворимые горные породы (известняки, гипс, мел, каменная соль), наблюдаются удивительные природные явления. Реки и ручьи, растворяя горные породы, исчезают с поверхности и устремляются в глубь земных недр. Явления, связанные с растворением горных пород поверхностными и , называются карстом. Растворение пород приводит к образованию карстовых форм рельефа: пещер, пропастей, шахт, воронок, иногда заполненных водой. Красивейшие сталактиты (многометровые известковые «сосульки») и сталагмиты («колонны» из известковых наростов) образуют в пещерах причудливые скульптуры.

Деятельность ветра

На открытых безлесных пространствах ветер перемещает гигантские скопления песчаных или глинистых частиц, создавая эоловые формы рельефа (Эол бог покровитель ветра в древнегреческой мифологии). Большинство песчаных покрыто барханами песчаными холмами. Иногда они достигают высоты 100 метров. Сверху бархан имеет вид серпа.

Двигаясь с большой скоростью, частички песка и щебня обрабатывают каменные глыбы подобно наждачной бумаге. Этот процесс идёт быстрее у поверхности земли, где песчинок больше.

В результате деятельности ветра могут накапливаться плотные отложения из пылеватых частиц.
Такие однородные пористые породы серовато-жёлтого цвета называются лёссами.

Деятельность ледников

Деятельность человека

Большую роль в изменении рельефа играет человек. Особенно сильно изменены его деятельностью равнины. Люди издавна селятся на равнинах, они строят дома и дороги, засыпают овраги, сооружают насыпи. Человек изменяет рельеф при добыче : выкапываются огромные карьеры, насыпаются холмы-терриконы - отвалы пустой породы.

Масштабы человеческой деятельности могут быть сравнимы с природными процессами. Например, реки вырабатывают свои долины, вынося горные породы, а человек строит сопоставимые по размерам каналы.

Формы рельефа, созданные человеком, называются антропогенными. Антропогенное изменение рельефа происходит с помощью современной техники и довольно быстрыми темпами.

Движущаяся вода и ветер выполняют огромную разрушительную работу, которая называется (от латинского слова erosio разъедание). Эрозия земель - природный процесс. Однако он усиливается в результате хозяйственной деятельности людей: распашки склонов, вырубки лесов, неумеренного выпаса скота, прокладки дорог. Только за последние сто лет эрозии подверглась третья часть всех обрабатываемых земель мира. Наибольших эти процессы достигли в крупных земледельческих районах России, Китая и США.

Формирование рельефа Земли

Особенности рельефа Земли

Изменение рельефа Земли

С самого начала обсуждения проблемы формирования земного шара именно горы смущали ученых. Потому что если предположить, что сперва Земля была огненным, расплавленным шаром, то ее поверхность после остывания должна бы остаться более или менее гладкой... Ну, может быть, слегка шероховатой. А откуда же появились высокие горные хребты и глубочайшие впадины в океанах?

В XIX веке господствующей идеей стало представление о том, что время от времени по каким-то причинам раскаленная магма изнутри приступом идет на каменную оболочку и тогда в ней вспучиваются горы и поднимаются хребты. Поднимаются? Но почему тогда на поверхности так много районов, где хребты идут параллельными складками один подле другого? При вспучивании каждая горная область должна бы иметь форму купола или пузыря... Объяснить возникновение складчатых гор действием вертикальных сил, идущих из недр, не удавалось. Складки требовали горизонтальных усилий.

А теперь возьмите яблоко в руку. Пусть это будет небольшое, слегка привядшее яблочко. Сдавите его в руках. Смотрите, как сморщилась кожица, как покрылась она мелкими складочками. А представьте себе, что яблочко размером с Землю. Складочки вырастут и превратятся в высоченные горные хребты... Какие же силы могли бы так сдавить землю, чтобы она покрылась складками?

Вы ведь знаете, что каждое раскаленное тело при остывании сжимается. Может быть, этот механизм годится и для объяснения складчатых гор на земном шаре? Представьте себе - расплавленная Земля остыла и покрылась коркой. Корка или кора, как каменное платье, оказалась «сшитой» на определенный размер. Но планета-то остывает дальше. А раз остывает, то и сжимается. Немудрено, что со временем каменная рубашка оказалась велика, стала мяться, идти складками.

Такой процесс предложил для объяснения формирования поверхности Земли французский ученый Эли де Бомон. Он назвал свою гипотезу контракционной от слова «контракция», что в переводе с латыни как раз и обозначало - сжатие. Один швейцарский геолог попробовал вычислить, какими оказались бы размеры земного шара, если разгладить все складчатые горы. Получилась весьма впечатляющая величина. Радиус нашей планеты при этом увеличился бы едва ли не на шестьдесят километров!

Новая гипотеза приобрела множество сторонников. Самые известные ученые поддержали ее. Они углубляли и разрабатывали отдельные разделы, превращая предположение французского геолога в единую науку о развитии, движении и деформации земной коры. В 1860 году эту науку, ставшую важнейшим разделом комплекса наук о Земле, предложили назвать геотектоникой. Станем и мы дальше называть этот важный раздел так же.

Гипотеза контракции или сжатия Земли и сморщивания ее коры особенно укрепилась, когда в Альпах и Аппалачах открыли крупные «надвиги». Этим термином геологи обозначают разрывы в залегающих горных породах, когда одни из них как бы надвинуты на другие. Специалисты торжествовали, новая гипотеза объясняла все!

Правда, возникал маленький вопрос: а почему горы-складки располагались не по всей поверхности земли равномерно, как на сморщившемся, усохшем яблоке, а собирались в горные пояса? И почему эти пояса располагались только по определенным параллелям и меридианам? Вопросик пустяковый, но коварный. Потому что на него ответить контракционная гипотеза никак не могла.

Глубокие корни гор

Примерно в середине XIX века, а точнее в 1855 году английский ученый Д. Пратт вел геодезические работы на территории «жемчужины британской короны», то есть в Индии. Он работал вблизи Гималаев. Каждый день, просыпаясь поутру, англичанин любовался величественным зрелищем грандиозного горного района и невольно задумывался: сколько же может весить этот колоссальный горный массив? Его масса должна непременно обладать заметной силой притяжения. Как бы это узнать? Стоп, но если это так, то внушительная масса должна отклонять легкий грузик на нитке от вертикали. Вертикаль - это направление силы тяжести Земли, а отклонение - направление силы притяжения Гималаев...

Пратт тут же прикинул общую массу горного массива. Получилась действительно порядочная величина. По ней, пользуясь законом Ньютона, он вычислил ожидаемое отклонение. Потом неподалеку от склонов гор подвесил грузик на нитке и с помощью астрономических наблюдений измерил его истинное отклонение. Каково же было разочарование ученого, когда при сравнении результатов оказалось, что теория отличается от практики более чем в пять раз. Вычисленный угол оказывался больше измеренного.

Пратт никак не мог взять в толк, в чем же заключается его ошибка. Он обратился к гипотезе, выдвинутой когда-то еще Леонардо да Винчи. Великий итальянский ученый и инженер предположил, что земная кора и расплавленный подкорковый слой - мантия почти всюду находятся в равновесии. То есть блоки коры плавают на тяжелом расплаве, как льдины на воде. А так как при этом часть «льдин»-блоков погружена в расплав, то в целом блоки оказываются легче, чем принимаются при расчете. Ведь кто не знает, что у айсберга лишь меньшая часть выступает над водой, а большая - погружена...

Соотечественник Пратта Дж. Эри добавил к его рассуждениям свои соображения. «Плотность горных пород примерно одинакова, - говорил он. - Но более высокие и мощные горы стоят, глубже погрузившись в мантию. Менее высокие горы сидят мельче». Получалось, что горы как бы имеют корни. Причем корневая часть оказывалась сложенной из менее плотных пород, по сравнению с плотностью мантии.

Хорошая получилась гипотеза. Долгое время пользовались ею ученые при измерениях силы тяжести в разных районах Земли. До той поры, пока не полетели над планетой искусственные спутники Земли - самые верные указатели и регистраторы поля притяжения. Но о них еще речь впереди.

В конце прошлого века американский геолог Даттон высказал мысль о том, что наиболее высокие и мощные блоки земной коры размываются дождями и текущими водами сильнее низких, а следовательно, они должны становиться легче и постепенно «всплывать». Тем временем на более легкие и низкие блоки наносятся осадки с вершин более высоких соседей, и они тяжелеют. А раз тяжелеют, то и погружаются. Не является ли этот процесс одной из возможных причин землетрясений в горах и новых горообразований?..

Очень много интересных гипотез выдвинули ученые конца прошлого века. Но едва ли не самой плодотворной из них было создание учения о геосинклиналях и платформах.

Геосинклиналями специалисты называют довольно обширные вытянутые в длину участки земной коры, где особенно часто наблюдаются землетрясения и извержения вулканов. Рельеф в этих местах обычно такой, что, как говорится, «сам черт ногу сломит» - складка на складке.

Еще в 1859 году американский геолог Дж. Холл заметил, что в горно-складчатых областях осадки гораздо толще, чем в тех местах, где породы залегают спокойными горизонтальными пластами. Почему так? Может быть, под тяжестью накопившихся здесь осадков, смытых с соседних гор, кора земли прогнулась?..

Выдвинутое предположение понравилось. И несколько лет спустя коллега Холла Джеймс Дана развил взгляды своего предшественника. Он назвал удлиненные прогибы коры, вызванные боковым сжатием (тогда уже господствовала гипотеза контракции), геосинклиналями. Сложный термин произошел из объединения трех греческих слов: «ге» - земля, «син» - вместе и «клино» - наклонять.

Далеко не все геологи сразу согласились с мнением американского специалиста. Предлагались и другие картины развития геосинклиналий. Спор о них до наших дней не утихает уже более ста лет. Одни считают, что разогретое подкорковое вещество разделяется на тяжелые и легкие фракции. Тяжелые «тонут», выдавливая кверху более легкие. Они поднимаются, «всплывают» и вспарывают, разрывают литосферу. Тогда обломки тяжелых плит соскальзывают и сминают осадочные слои...

Другие предлагают иной механизм. Они считают, что в раскаленном подкорковом веществе Земли существуют медленные течения. Они затягивают, сминают осадочные породы. А оказавшись в глубине, эти породы переплавляются под действием давлений и высоких температур.

Есть и другие концепции. Согласно одной из них, например, геосинклинальные складки возникают по краям континентальных платформ, плавающих, как льдины в океане, по пластичному подкорковому веществу. К сожалению, пока ни одно из существующих на этот счет предложений полностью не удовлетворяет наблюдаемым в природе закономерностям. И потому спор, по-видимому, далек от своего завершения.

Выдающийся русский и советский геолог, общественный деятель Александр Петрович Карпинский родился в 1846 году, в поселке Турьинские рудники в Верхотурском уезде на Урале. Ныне это город, носящий его имя. Отец его был горны/и инженером, и потому неудивительно, что молодой человек по окончании гимназии поступил в прославленный Петербургский горный институт.

В тридцать один год Александр Петрович стал профессором геологии. А через девять лет его избрали членом императорской Академии наук.

Он исследует строение и полезные ископаемые Урала и составляет сводные геологические карты европейской части России. Начиная с петрографии - науки о составе и происхождении горных пород, Карпинский касается всех буквально разделов науки о Земле и везде оставляет заметный след. Он исследует ископаемые организмы. Пишет выдающиеся работы по тектонике и о геологическом прошлом земли - по палеогеографии.

Учение о геосинклиналях, несмотря на прогрессивные идеи в его основе, испытывало на первом этапе множество трудностей. И в это время Александр Петрович вплотную занялся изучением «спокойных областей» земной поверхности. Впоследствии они-то и получили название «платформ». В этих работах Карпинский обобщил огромный материал по геологии России, накопленный поколениями русских геологов. Он показал, как менялись очертания древних морей, заливавших эти области в разное время. И вывел два рода «волнообразно-колебательных движений» земной коры. Один, более грандиозный, образует океанические впадины и материковые поднятия. Другой, не столь величественный по масштабам, обеспечивает появление впадин и выпуклостей в пределах самой платформы. Так, например, местные колебания Русской платформы, по мнению Карпинского, происходили параллельно Уральскому хребту в меридиональном направлении и параллельно Кавказу - по параллелям.

После работ Александра Петровича Карпинского стало ясно, что платформы - это вовсе не неподвижные и неизменяемые участки земной поверхности. Они развиваются и изменяются со временем. К краям платформ время от времени присоединяются горные области, которые, застывая, увеличивают их общую площадь. Таким образом, развитие платформ оказывалось тесным образом связанным с образованием геосинклиналий и подчеркивало развитие всей Земли.

Свои выводы Александр Петрович основывал на принципах контрэкционной гипотезы, считая ее «счастливейшим научным завоеванием». И хотя результаты дальнейших исследований все яснее доказывали несостоятельность этой гипотезы, теория геосинклиналий и платформ продолжала развиваться независимо, становясь одним из важнейших положений геотектоники.

Расширение на смену сжатию

Пожалуй, именно новые представления об изначально холодной Земле похоронили гипотезу контракции. Появились новые идеи. Одна из них заключалась в том, что наша планета образовалась из более плотного вещества, по сравнению с существующими горными породами. И образовавшийся земной шар был сначала чуть не вдвое меньше теперешнего. На таком плотном космическом теле не было никаких особых впадин и выпуклостей - сплошная, довольно ровная оболочка. Но постепенно, разогреваясь, первоначальный планетный ком стал «распухать». Поверхность его растрескивалась. Стали образовываться отдельные глыбы континентов, разделенные глубокими впадинами океанов.

Однако у новой гипотезы тоже было немало уязвимых мест. Причем одним из них опять-таки были складчатые горы. Ведь складки могли появиться только при сжатии.

Чтобы справиться с таким противоречием, специалисты пришли к мнению, что периоды расширения могли сменяться периодами сжатия. Появилась еще одна «пульсационная гипотеза». Ее и сегодня поддерживает ряд ученых, считая, что именно в попеременном сокращении и расширении земного радиуса могут заключаться причины перемещения материков. Ведь эпохи складчатости в истории нашей планеты тоже следовали друг за другом.

Не очень ясны причины таких пульсаций. Русский ученый академик М. А. Усов связывает их с космическими факторами - с притяжением Луны и Солнца, с влиянием других планет. Другой ученый академик В. А. Обручев считал одной из возможных причин расширения Земли переход магмы из твердого состояния в жидкое. При этом много тепла уходит из недр. Земля охлаждается, а следовательно, и сильно сжимается.

Гипотеза пульсации имеет довольно много сторонников среди современных ученых. Они измерили горные давления в различных точках нашей планеты и сделали вывод о том, что в данный момент Земля переживает период сжатия. Если это так, то количество землетрясений должно расти...

Я привел несколько примеров для того, чтобы вы поняли - вопросы развития нашей планеты очень сложные. Люди уже давно стараются проникнуть в тайну геологической истории Земли, но и по сей день единого мнения по всем вопросам у ученых нет.

Критические зоны планеты

Ученые видели, что различные зоны земного шара, его горные системы, низменности приурочены к определенным поясам. А почему не по всей поверхности равномерно?

Вот, например, Александр Петрович Карпинский отметил горные пояса, идущие в меридиональном направлении. А в то же время Александр Иванович Воейков - выдающийся географ и климатолог, а также русский геодезист и географ Алексей Андреевич Тилло привели очень убедительные доводы в пользу широтного расположения горных систем.

Почему же все-таки особые зоны возникают не повсеместно, а только в каких-то критических областях?

Астрономы давно заметили, что ход вращения Земли постепенно замедляется. Нашу планету тормозит в основном приливное трение в ее коре, возникающее из-за притяжения Солнца и Луны. При этом постепенно уменьшаются силы полярного сжатия планеты. А значит, в высоких широтах литосфера и гидросфера будут понемногу подниматься, а в низких широтах у экватора - опускаться. При подобном процессе пограничными полосами, испытывающими особенно сильные напряжения, по мнению ученых, являются семидесятая параллель, шестьдесят вторая и тридцать пятая, а также экватор. Именно в этих поясах располагаются зоны - тектонических нарушений. На суше - это горные районы, глубокие пропасти и вулканы. На море - «ревущие сороковые» и другие районы бесчисленных опасных приключений, не раз и не два заканчивавшихся трагически.

А посмотрите на длиннющий хребет Кордильер Северной и Южной Америки, на Аппалачи, на Уральский хребет...

Найдите на карте Западно-Сибирскую равнину, которая переходит в низменность Тургайского прогиба и в Туранскую низменность.

Взгляните, как идет система рифтовых прогибов, пересекающих с севера на юг восточную часть Африки...

Все они ориентированы по меридианам или близко к ним. Советский ученый Г. Н. Каттерфельд считает критическими зонами меридионального направления пояса, расположенные между 105 - 75°, 60 - 120° и 150 - 30°.

Эти критические зоны очень важно знать исследователям Земли. Они имеют очень большое не только теоретическое, но и практическое значение. Потому что именно в них наблюдается усиленная магматическая активность подкоркового вещества. И вместе с магмой по трещинам и разломам в верхние зоны коры поднимаются рудные элементы, которые создают месторождения различных металлов. Например, уже сегодня геологам хорошо известен Тихоокеанский рудный пояс с крупными месторождениями олова, серебра и других металлов. Этот пояс огромным кольцом охватывает величайший океан земли. Известен и Средиземноморский рудный пояс, хранящий в себе медь и свинцово-цинковые руды. От Атлантического побережья Южной Европы и Северной Африки тянется он через Кавказ, Тянь-Шань до самых Гималаев...

Но что же является источником колоссальной энергии, за счет которой осуществляются грандиозные тектонические процессы в земной коре? По этому поводу и в наше время не затихают горячие дискуссии. Одни считают тектонику свойством вообще присущим саморазвитию любой планеты. Источником ее сил они видят внутреннее тепло Земли. Другие отдают предпочтение космическим факторам: взаимодействию Земли с Солнцем, с Луной, изменению солнечной активности, даже положению Солнечной системы относительно центра Галактики...

Единого взгляда и единого мнения нет! Может быть, пройдет несколько лет и появится новая гипотеза, объединяющая причины всепланетного развития на основании новых факторов, добытых уже не только на поверхности Земли, но и на других планетах.

«Бомба» профессора Вегенера

Вы никогда не задумывались, взглянув на глобус или географическую карту мира, почему восточный берег Южной Америки и западное побережье Африки так удивительно схожи?.. Присмотритесь-ка повнимательнее. Картина получается поразительная. Полное впечатление, что когда-то эти отдельные куски суши составляли единую огромную нашлепку на земном шаре, один гигантский праматерик.

Между прочим, первым это сходство отметил еще в 1620 году уже известный нам Бэкон, как только успели выйти более или менее правдоподобные карты с Новым и Старым Светом. А сорок лет спустя французский аббат Ф. Пласе утверждал, что «до всемирного потопа» обе части света были крепко-накрепко соединены друг с другом. Правда, о причине их разъединения почтенный патер не распространялся. Но именно с этого момента, при желании, можно начинать историю развития гипотезы о движении материков, или гипотезы «мобилизма», как ее называют в науке.

По-настоящему мобилизм связан с именем Альфреда Вегенера, который возродил забытые предположения Бэкона и Пласе, поставив их на «научные ноги». В общем-то, мысль о движении материков возникла у Вегенера случайно. Он рассматривал карту мира и так же, как и мы с вами, поразился сходству берегов континентов.

Кем был профессор Вегенер? Он окончил университет по специальности астронома. Но это была, по его выражению, «слишком сидячая работа» для его темперамента. Научившись управлять аэростатом, он вместе с братом занялся исследованиями атмосферы и увлекся метеорологией. Через несколько лет он отправился в Гренландию, чтобы вести метеорологические наблюдения в условиях ее сурового климата.

Когда основоположник климатологии член-корреспондент Петербургской Академии наук Александр Иванович Воейков прочитал книгу молодого Вегенера «Термодинамика атмосферы», он воскликнул: «Взошла новая звезда в метеорологии!»

И вдруг - Вегенер и строение и эволюция Земли?

Как и другие его современники, Вегенер представлял себе землю, произошедшей из огромной капли расплавленного вещества. Она постепенно остывала, покрывалась коркой, которая покоилась на тяжелой и жидкой базальтовой массе.

Еще направляясь в Гренландию, ученый не раз обращал внимание на могучие льдины, величественно плывущие по стылой воде. Может быть, этот образ и навеял ему представления о расплывающихся материках. Вот только какие силы могли их двигать? Но вы ведь не забыли, что по образованию Вегенер был астрономом. И вот в его воображении возникает четкая картина, как увлекается подкорковый слой вращением Земли, как Луна возбуждает в мантии гигантские приливные волны, взламывающие непрочную оболочку, и как захваченные приливными течениями куски коры надвигаются и громоздятся друг на друга, образуя единый праматерик, окрещенный им Пангеей.

Много миллионов лет просуществовала Пангея.

А тем временем под воздействием тех же внешних сил в ее глубинах все накапливались и накапливались напряжения. И в один прекрасный момент не выдержал праматерик. Побежали по нему трещины, и стал он распадаться на части. Откололись Америки от Африки и Европы и поплыли на запад. Между ними раскрылся Атлантический океан. Оторвалась от Северной Америки Гренландия, а от Африки Индостан. Раскололись Антарктида с Австралией...

Однажды оказавшись почти случайно на собрании немецкого Геологического общества, Вегенер не задумываясь изложил свою гипотезу собравшимся. Что тут началось!.. Почтенные господа, только что мирно дремавшие на стульях, не просто проснулись. Они пришли в ярость. Они кричали, что взгляды Вегенера ошибочны, а идеи нелепы и даже смешны. А сам он безграмотен и... Вспомним, что в то время в геологическом мире безраздельно господствовала контракционная гипотеза. Какое же горизонтальное движение материков возможно при общем сжатии планеты? Нет, земная кора может только подниматься и опускаться.

Стоит отметить, что такое приблизительное совпадение долгие годы было сильным аргументом противников мобилизма - гипотезы движения материков. Уже в наше время, когда реконструкцию Пангеи решили провести не по береговой линии континентов, а по границе материкового склона, включив в материки и шельфы, картина получилась совсем иной. В 1965 году ученые воспользовались электронной вычислительной машиной и подобрали такое положение материков, при котором зоны несовпадения оказались пренебрежимо малыми. Разве это не доказательство? Но вернемся к Вегенеру.

Резкая критика не обескуражила ученого. Он лишь сделал вывод, что для доказательства новой идеи ему нужно накопить много фактов, очень много.

В то время ученый работал в Марбургском университете. Читал лекции студентам, обрабатывал материалы своей поездки в Гренландию и думал. Все его мысли захватила новая идея. Он искал силы, способные сдвинуть материки с места, растащить их, искал пути движения континентов.

В конечном счете Альфреду Вегенеру так и не удалось найти достаточно доказательств для подкрепления своей гипотезы. Сил притяжения Луны и Солнца было явно недостаточно, чтобы сдвинуть с места глыбы континентов. Да и представление о сплошном расплавленном подкорковом слое оказалось несостоятельным. Старая школа победила.

Мнение о том, что материки могут двигаться, было если не забыто, то надолго (в понимании нашего времени - на самом же деле совсем не надолго) сошло со сцены. И лишь в пятидесятых годах XX столетия поруганная гипотеза мощно возродилась, пополнилась новыми фактами и заняла ведущую роль в современной науке о Земле.

Литература

1.#"#">Баландин Р.К. Глазами геолога. – М., 1973

2.#"#">Гангнус А.А. Тайна земных катастроф. – М., 1985

3.Иванов В.Л. Архипелаг двух морей. – М., 2003

4.Кац Я.Г., Козлов В.В., Макарова Н.В. Геологи изучают планету. – М., 1984

До сих пор мы рассматривали внутренние рельефообразующие факторы, такие как движения земной коры, складкообразование и др. Эти процессы обусловлены действием внутренней энергии Земли. В результате создаются крупные формы рельефа, такие как горы и равнины. На уроке вы узнаете, как формировался и продолжает формироваться рельеф под воздействием внешних геологических процессов.

Над разрушением горных пород трудятся и другие силы - химические . Просачиваясь по трещинам, вода постепенно растворяет горные породы (см. рис. 3).

Рис. 3. Растворение горных пород

Растворяющая способность воды увеличивается при содержании в ней различных газов. Некоторые породы (гранит, песчаник) водой не растворяются, другие (известняк, гипс) растворяются весьма интенсивно. Если вода проникает вдоль трещин в слои растворимых горных пород, то эти трещины расширяются. В тех местах, где водорастворимые породы находятся близко к поверхности, на ней наблюдаются многочисленные провалы, воронки и котловины. Это карстовые формы рельефа (см. рис. 4).

Рис. 4. Карстовые формы рельефа

Карст - это процесс растворения горных пород.

Карстовые формы рельефа развиты на Восточно-Европейской равнине, Предуралье, Урале и Кавказе.

Горные породы могут разрушаться и в результате жизнедеятельности живых организмов (растения камнеломки и др.). Это биологическое выветривание .

Одновременно с процессами разрушения идет перенос продуктов разрушения в пониженные участки, таким образом, рельеф сглаживается.

Рассмотрим, как четвертичное оледенение сформировало современный рельеф нашей страны. Ледники сохранились на сегодняшний день только лишь на арктических островах и на высочайших вершинах России (см. рис. 5).

Рис. 5. Ледники в горах Кавказа ()

Спускаясь по крутым склонам, ледники формируют особый, ледниковый рельеф . Такой рельеф распространен в России и там, где нет современных ледников, - в северных частях Восточно-Европейской и Западно-Сибирской равнин. Это результат древнего оледенения, возникшего в четвертичную эпоху из-за похолодания климата (см. рис. 6).

Рис. 6. Территория древних ледников

Крупнейшими центрами оледенения в то время были Скандинавские горы, Полярный Урал, острова Новая Земля, горы полуострова Таймыр. Толщина льда на Скандинавском и Кольском полуостровах достигала 3-х километров.

Оледенение возникало не один раз. Оно надвигалось на территорию наших равнин несколькими волнами. Ученые считают, что было, примерно 3-4 оледенения, которые сменялись межледниковыми эпохами. Последний ледниковый период закончился примерно 10 тысяч лет назад. Наиболее значительным было оледенение на Восточно-Европейской равнине, где южный край ледника достиг 48º-50º с. ш.

К югу количество осадков уменьшалось, поэтому в Западной Сибири оледенение достигло всего лишь 60º с. ш., а восточнее Енисея из за небольшого количества снега было ещё меньше.

В центрах оледенения, откуда двигались древние ледники, широко распространены следы деятельности в виде особых форм рельефа - Бараньих лбов. Это выступы горных пород с царапинами и шрамами на поверхности (склоны, обращенные навстречу движения ледника, пологие, а противоположные - крутые) (см. рис. 7).

Рис. 7. Бараний лоб

Под действием собственного веса ледники распространялись далеко от центра своего формирования. По пути своего следования они сглаживали рельеф. Характерный ледниковый рельеф наблюдается в России на территории Кольского полуострова, Тиманского кряжа, республики Карелия. Движущийся ледник соскабливал с поверхности мягкие рыхлые породы и даже крупные, твердые обломки. Вмерзшие в лед глина и твёрдые породы образовывали морену (отложения из обломков горных пород, образованные ледниками при их движении и таянии). Эти породы откладывались в более южных районах, где ледник таял. В результате образовались моренные холмы и даже целые моренные равнины - Валдайская, Смоленско-Московская.

Рис. 8. Образование морены

Когда климат в течение длительного времени не менялся, ледник останавливался на месте и вдоль его края накапливались единичные морены. В рельефе они представлены изогнутыми рядами длиной в десятки или иногда даже и в сотни километров, например Северные Увалы на Восточно-Европейской равнине (см. рис. 8).

При таянии ледников образовывались потоки талых вод, которые перемывали морену, поэтому в областях распространения ледниковых холмов и гряд, и особенно вдоль края ледника накапливались водно-ледниковые наносы. Песчаные плоские равнины, возникшие по окраинам тающего ледника, называются - зандровыми (от нем. «зандр» - песок) . Примерами зандровых равнин являются Мещерская низменность, Верхневолжская, Вятско-Камская низина (см. рис. 9).

Рис. 9. Образование зандровых равнин

Среди равнинно-низменных холмов широко распространены водно-ледниковые формы рельефа, озы (от шведск. «оз» - гряда) . Это узкие гряды, высотой до 30 метров и протяженностью до нескольких десятков километров, по форме напоминающие железнодорожные насыпи. Они сформировались в результате оседания на поверхности рыхлых наносов, образованных протекавшими по поверхности ледников реками (см. рис. 10).

Рис. 10. Образование озов

Вся вода, протекающая по суше, под действием силы тяжести также формирует рельеф. Постоянные водотоки - реки - образуют речные долины. С временными водотоками, образующимися после проливных дождей, связано образование оврагов (см. рис. 11).

Рис. 11. Овраг

Зарастая, овраг превращается в балку. Наиболее развитую балочно-овражную сеть имеют склоны возвышенностей (Среднерусской, Приволжской и др.). Хорошо разработанные речные долины характерны для рек, протекающих вне границ последних оледенений. Текучие воды не только разрушают горные породы, но и накапливают речные наносы - гальку, гравий, песок и ил (см. рис. 12).

Рис. 12. Накопление речных наносов

Из них состоят речные поймы, протягивающиеся полосами вдоль русел рек (см. рис. 13).

Рис. 13. Строение речной долины

Иногда широта пойм колеблется от 1,5 до 60 км (например, у Волги) и зависит от размеров рек (см. рис. 14).

Рис. 14. Ширина Волги на различных участках

Вдоль речных долин располагаются традиционные места поселения людей и формируется особый вид хозяйственной деятельности - животноводство на пойменных лугах.

На низменностях, испытывающих медленные тектонические опускания, происходят обширные разливы рек и блуждания их русел. В результате формируются равнины, построенные речными наносами. Наиболее распространен такой рельеф на юге Западной Сибири (см. рис. 15).

Рис. 15. Западная Сибирь

Различают два вида эрозии - боковую и донную. Глубинная эрозия направлена на врезание потоков в глубину и преобладает у горных рек и рек плоскогорий, именно поэтому здесь образуются глубокие речные долины с крутыми склонами. Боковая эрозия направлена на размытие берегов и характерна для равнинных рек. Говоря о воздействии воды на рельеф, можно рассмотреть и воздействие моря. При наступлении морей на затопленную сушу, горизонтальными слоями накапливаются осадочные горные породы. Поверхность равнин, с которых море отступило давно, сильно изменена текучими водами, ветром, ледниками (см. рис. 16).

Рис. 16. Отступание моря

Равнины, относительно недавно покинутые морем, имеют относительно плоский рельеф. В России это Прикаспийская низменность, а также многие равнинные участки вдоль берегов Северного Ледовитого океана, часть низменных равнин Предкавказья.

Деятельность ветра также создает определённые формы рельефа, которые получили название эоловые . Эоловые формы рельефа образуются на открытых пространствах. В таких условиях ветер переносит большое количество песка и пыли. Зачастую небольшой кустик является достаточной преградой, скорость ветра снижается, и песок падает на землю. Так образуется вначале маленькие, а затем большие песчаные холмы - барханы и дюны. В плане бархан имеет форму полумесяца, причем своей выпуклой стороной он обращён к ветру. С изменением направления ветра меняется и ориентация бархана. Формы рельефа, связанные с ветром, распространены главным образом на Прикаспийской низменности (барханы), на Балтийском побережье (дюны) (см. рис. 17).

Рис. 17. Образование бархана

Много мелких обломков и песка ветер сдувает с оголённых горных вершин. Многие выносимые им песчинки снова ударяются о скалы и способствуют их разрушению. Можно наблюдать причудливые фигуры выветривания - останцы (см. рис. 18).

Рис. 18. Останцы - причудливые формы рельефа

С деятельностью ветра связано формирование особых пород - лёсов. - это рыхлая, пористая, пылеватая порода (см. рис. 19).

Рис. 19. Лёс

Лесом покрыты большие территории в южных частях Восточно-Европейской и Западно-Сибирской равнин, а также в бассейне реки Лены, где не было древних ледников (см. рис. 20).

Рис. 20. Территории России, покрытые лёсом (показаны желтым цветом)

Считается, что формирование лёса связано с навеванием пыли и сильными ветрами. На лёсе образуются наиболее плодородные почвы, однако он легко размывается водой и в нем появляются самые глубокие овраги.

  1. Формирование рельефа происходит под влиянием как внешних, так и внутренних сил.
  2. Внутренние силы создают крупные формы рельефа, а внешние силы разрушают их, преобразуя в более мелкие.
  3. Под действием внешних сил осуществляется как разрушительная, так и созидательная работа.

Список литературы

  1. География России. Природа. Население. 1 ч. 8 класс / В.П. Дронов, И.И. Баринова, В.Я Ром, А.А. Лобжанидзе.
  2. В.Б. Пятунин, Е.А. Таможняя. География России. Природа. Население. 8 класс.
  3. Атлас. География России. Население и хозяйство. - М.: Дрофа, 2012.
  4. В.П.Дронов, Л.Е Савельева. УМК (учебно-методический комплект) «СФЕРЫ». Учебник «Россия: природа, население, хозяйство. 8 класс». Атлас.
  1. Влияние внутренних и внешних процессов на формирование рельефа ().
  2. Внешние силы, изменяющие рельеф. Выветривание. ().
  3. Выветривание ().
  4. Оледенение на территории России ().
  5. Физика барханов, или как образуются песчаные волны ().

Домашнее задание

  1. Верно ли утверждение: «Выветривание - это процесс разрушения горных пород под воздействием ветра»?
  2. Под воздействием каких сил (внешних или внутренних) вершины Кавказских гор и Алтая приобрели остроконечную форму?