Современная нефтепереработка. Переработка нефти. Способы и технология переработки нефти. Организационная структура нефтепереработки в России


Сущность нефтеперерабатывающего производства
Процесс переработки нефти можно разделить на 3 основных этапа:
1. Разделение нефтяного сырья на фракции, различающиеся по интервалам температур кипения (первичная переработка) ;
2. Переработка полученных фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов (вторичная переработка) ;
3. Смешение компонентов с вовлечением, при необходимости, различных присадок, с получением товарных нефтепродуктов с заданными показателями качества (товарное производство) .
Продукцией НПЗ являются моторные и котельные топлива, сжиженные газы, различные виды сырья для нефтехимических производств, а также, в зависимости от технологической схемы предприятия - смазочные, гидравлические и иные масла, битумы, нефтяные коксы, парафины. Исходя из набора технологических процессов, на НПЗ может быть получено от 5 до более, чем 40 позиций товарных нефтепродуктов.
Нефтепереработка - непрерывное производство, период работы производств между капитальными ремонтами на современных заводах составляет до 3-х лет. Функциональной единицей НПЗ является технологическая установка - производственный объект с набором оборудования, позволяющего осуществить полный цикл того или иного технологического процесса.
В данном материале кратко описаны основные технологические процессы топливного производства - получения моторных и котельных топлив, а также кокса.

Поставка и приём нефти
В России основные объёмы сырой нефти, поставляемой на переработку, поступают на НПЗ от добывающих объединений по магистральным нефтепроводам. Небольшие количества нефти, а также газовый конденсат, поставляются по железной дороге. В государствах-импортёрах нефти, имеющих выход к морю, поставка на припортовые НПЗ осуществляется водным транспортом.
Принятое на завод сырьё поступает в соответствующие емкости товарно-сырьевой базы (рис.1), связанной трубопроводами со всеми технологическими установками НПЗ. Количество поступившей нефти определяется по данным приборного учёта, или путём замеров в сырьевых емкостях.

Подготовка нефти к переработке (электрообессоливание)
Сырая нефть содержит соли, вызывающие сильную коррозию технологического оборудования. Для их удаления нефть, поступающая из сырьевых емкостей, смешивается с водой, в которой соли растворяются, и поступает на ЭЛОУ - электрообессоливащую установку (рис.2). Процесс обессоливания осуществляется в электродегидраторах - цилиндрических аппаратах со смонтированными внутри электродами. Под воздействием тока высокого напряжения (25 кВ и более), смесь воды и нефти (эмульсия) разрушается, вода собирается внизу аппарата и откачивается. Для более эффективного разрушения эмульсии, в сырьё вводятся специальные вещества - деэмульгаторы . Температура процесса - 100-120°С.

Первичная переработка нефти
Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка . Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.
АВТ разделена на два блока - атмосферной и вакуумной перегонки .

1. Атмосферная перегонка
Атмосферная перегонка (рис. 3,4) предназначена для отбора светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки - мазут.
Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки) , через которые пары движутся вверх, а жидкость - вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.

2. Вакуумная перегонка
Вакуумная перегонка (рис.3,5,6) предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.
Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг) , а конец кипения вакуумного газойля - 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.
Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы (рис.7).

3. Стабилизация и вторичная перегонка бензина
Получаемая на атмосферном блоке бензиновая фракция содержит газы (в основном пропан и бутан) в объёме, превышающем требования по качеству, и не может использоваться ни в качестве компонента автобензина, ни в качестве товарного прямогонного бензина. Кроме того, процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции. Этим обусловлено включение в технологическую схему переработки нефти данного процесса (рис.4), при котором от бензиновой фракции отгоняются сжиженные газы, и осуществляется её разгонка на 2-5 узких фракций на соответствующем количестве колонн.

Продукты первичной переработки нефти охлаждаются в теплообменниках , в которых отдают тепло поступающему на переработку холодному сырью, за счет чего осуществляется экономия технологического топлива, в водяных и воздушных холодильниках и выводятся с производства. Аналогичная схема теплообмена используется и на других установках НПЗ.

Современные установки первичной переработки зачастую являются комбинированными и могут включать в себя вышеперечисленные процессы в различной конфигурации. Мощность таких установок составляет от 3 до 6 млн. тонн по сырой нефти в год.
На заводах сооружается несколько установок первичной переработки во избежание полной остановки завода при выводе одной из установок в ремонт.

Продукты первичной переработки нефти

Наименование

Интервалы кипения
(состав)

Где отбирается

Где используется
(в порядке приоритета)

Рефлюкс стабилизации

Пропан, бутан, изобутан

Блок стабилизации

Газофракционирование, товарная продукция, технологическое топливо

Стабильный прямогонный бензин (нафта)

Вторичная перегонка бензина

Смешение бензина, товарная продукция

Стабильная легкая бензиновая

Блок стабилизации

Изомеризация, смешение бензина, товарная продукция

Бензольная

Вторичная перегонка бензина

Производство соответствующих ароматических углеводородов

Толуольная

Вторичная перегонка бензина

Ксилольная

Вторичная перегонка бензина

Сырьё каталитического риформинга

Вторичная перегонка бензина

Каталитический риформинг

Тяжелая бензиновая

Вторичная перегонка бензина

Смешение керосина, зимнего дизтоплива, каталитический риформинг

Компонент керосина

Атмосферная перегонка

Смешение керосина, дизельных топлив

Дизельная

Атмосферная перегонка

Гидроочистка, смешение дизтоплив, мазутов

Атмосферная перегонка (остаток)

Вакуумная перегонка, гидрокрекинг, смешение мазутов

Вакуумный газойль

Вакуумная перегонка

Каталитический крекинг, гидрокрекинг, товарная продукция, смешение мазутов.

Вакуумная перегонка (остаток)

Коксование, гидрокрекинг, смешение мазутов.

*) - н.к. - начало кипения
**) - к.к. - конец кипения

Фотографии установок первичной переработки различной конфигурации

Рис.5. Установка вакуумной перегонки мощностью 1,5 млн. тонн в год на Туркменбашинском НПЗ по проекту фирмы Uhde. Рис. 6. Установка вакуумной перегонки мощностью 1,6 млн. тонн в год на НПЗ "ЛУКОЙЛ-ПНОС". На переднем плане - трубчатая печь (жёлтого цвета). Рис.7. Вакуумсоздающая аппаратура фирмы Graham. Видны 3 эжектора, в которые поступают пары с верха колонны.

Сергей Пронин


Мировая нефтепереработка - это глобальная, стратегически важная отрасль. Одна из самых наукоемких и высокотехнологичных областей промышленности и соответственно одна из самых капиталоемких. Отрасль с богатой историей и долгосрочными планами.

Развитию современной нефтепереработки сегодня способствует ряд факторов. Во-первых, рост экономики по регионам мира. Развивающиеся страны потребляют все больше и больше топлива. С каждым год их потребности в энергоносителях растут в геометрических прогрессиях. Поэтому большинство новых крупных нефтеперерабатывающих заводов строятся в странах азиатско-тихоокеанского региона, в Южной Америке и на Ближнем Востоке. На сегодняшний день самым мощным НПЗ в мире является завод частной индийской компании «Релайенс индастриз» (RIL) в г. Джамнагар (запад штата Гуджарат). Он был введен в эксплуатацию в 1999 года и на сегодняшний день перерабатывает почти 72 миллиона тонн нефти в год! В тройке крупнейших предприятий мира также находятся Ulsan Refinery в Южной Корее и Paraguana Refinery Complex в Венесуэле (порядка 55 миллионов тонн нефти в год). Для сравнения – крупнейшее отечественное предприятие Омский НПЗ, принадлежащий компании «Газпром нефть» перерабатывает порядка 22 миллионов тонн нефти в год.

При этом стоит заметить, что основной тенденцией развития НПЗ является не просто наращивание объемов, а увеличение глубины переработки. Ведь, чем больше дорогостоящих светлых нефтепродуктов удастся получить из одного и того же объема нефти, тем более рентабельным будет производство. Для увеличения глубины переработки во всем мире наращивается доля вторичных процессов. Эффективность современного завода отражает так называемый индекс Нельсона – показатель оценивающий уровень вторичной мощности преобразования на НПЗ по отношению к первичной мощности дистилляции. Индекс сложности Нельсона присваивает коэффициент для каждой установки на заводе на основе ее сложности и стоимости в сравнении с оборудованием по первичной переработке нефти, которому присваивается коэффициент сложности 1,0. Напри¬мер, установка каталитического крекинга имеет коэф¬фициент, равный 4,0, то есть она в 4 раза сложнее, чем установка для перегонки сырой нефти при той же производительности. Индекс Нельсона для НПЗ в Джамнагаре составляет 15. Для того же Омского НПЗ он сейчас составляет 8,5. Но принятая программа по модернизации отечественных заводов до 2020 года предполагает введение в строй новых мощностей вторичных процессов, что позволит «подтянуть» этот показатель. Так расчетный индекс Нельсона завода «ТАНЭКО» в Татарстане после окончания строительства должен составить 15 единиц!

Вторым важнейшим фактором развития мировой нефтепереработки является постоянное ужесточение требований экологического характера. Всё более строгими становятся требования к содержанию в топливах серы, ароматических углеводородов. Борьба за экологию начавшаяся в США и Западной Европе постепенно переходит и на рынки развивающихся стран. Еще лет 10 назад трудно было представить введение требований экологического класса 5 в нашей стране, но вот уже более года мы живем с данными нормами.

Соблюдение жестких экологических норм не простая задача. Усложняется она и тем, что качество нефти в среднем только ухудшается. Подходят к концу запасы легкодоступных высококачественных нефтей. Возрастает доля тяжелого, битуминозного и сланцевого сырья, содержащего все меньше бензиновых и дизельных фракций.

Над решением этих проблем работают ученые и инженеры по всему миру. Результатом их разработок являются сложные дорогостоящие установки и самые современные многокомпонентные катализаторы, позволяющие выжать максимум экологически чистых топлив даже из самой низкокачественной нефти. Однако все это приводит к значительным затратам для нефтеперерабатывающих предприятий, напрямую отражаясь на рентабельности заводов. Тренд к снижению их доходов просматривается по всему миру.

Все описанные выше тенденции очевидны и для России. Являясь частью мировой экономики и принимая общие правила работы, в нашей стране вкладывается все больше средств в развитие отечественной нефтепереработки, инженерии, науки. Осложняется это тем, что в 90-е и 2000-е годы не было построено практически ни одного предприятия, многое было потеряно и для отечественной науки, не подготавливались новые квалифицированные кадры для отрасли. Но принятая государственная программа «Энергоэффективность и развитие экономики» призванная кардинально улучшить состояние отечественной нефтепереработки до 2020 года позволит наверстать упущенное. Ее плоды можно увидеть уже сегодня на каждой заправке, где уже практически не встречается топливо ниже 5-ого экологического класса.

Для современной нефтепереработки характерна многоступенчатость при производстве продуктов высокого качества. Во многих случаях наряду с основными процессами проводят и подготовительные и завершающие процессы. К подготовительным технологическим процессам относят: 1. обессоливание нефти перед переработкой 2. выделение узких по пределам выкипания фракций из дистиллятов широкого фракционного состава; 3. гидроочистка бензиновых фракций перед их каталитическим риформингом; 4. гидрообессеривание газойлевого сырья, направляемого на каталитический крекинг; 5. деасфальтизация гудронов; 6. гидроочистка керосинового дистиллята перед его абсорбционным разделением и т. д.

2 стадия, 1 стадия Первичная переработка 3 стадия Вторичная переработка риформинг Обессоливание Разделение на фракции крекинг 4 стадия Очистка нефтепродуктов гидроочистка Селективная Очистка Растворителей депарафинизация гидроочистка

1 Стадия: Обессоливание нефти Производственный цикл начинается с ЭЛОУ. Это сокращение означает “электрообессоливающая установка”. Обессоливание начинают с того, что нефть забирают из заводского резервуара, смешивают ее с промывной водой, деэмульгаторами, щелочью (если в сырой нефти есть кислоты). Затем смесь нагревают до 80- 120 °С и подают в электродегидратор. В электрогидраторе под воздействием электрического поля и температуры вода и растворенные в ней неорганические соединения отделяются от нефти. Требования к процессу обессоливания жесткие: в нефти должно остаться не более 3 - 4 мг/л солей и около 0, 1% воды. Поэтому чаще всего в производстве применяют двухступенчатый процесс, и нефть после первого попадает во второй электродегидратор. После этого нефть считается пригодной для дальнейшей переработки и поступает на первичную перегонку.

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов Установки первичной переработки нефти составляют основу всех технологических процессов нефтеперерабатывающих заводов. От работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти.

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов В промышленной практике нефть разделяют на фракции, различающиеся температурными пределами выкипания: сжиженный газ бензины (автомобильный и авиационный) реактивное топливо керосин дизельное топливо (солярка), мазут Мазут перерабатывают для получения: парафина, битума, жидкого котельного топлива, масел.

2 Стадия: Перегонка нефти Смысл процесса перегонки нефти прост. Как и все другие соединения, каждый жидкий углеводород нефти имеет свою температуру кипения, то есть температуру, выше которой он испаряется. Температура кипения возрастает по мере увеличения числа атомов углерода в молекуле. Например, бензол С 6 Н 6 кипит при 80, 1 °С, а толуол С 7 Н 8 при 110, 6 °С.

2 Стадия: Перегонка нефти Например, если поместить нефть в перегонное устройство, которое называют перегонным кубом, и начать ее нагревать, то как только температура жидкости превысит 80 °С, из нее испарится весь бензол, а с ним и другие углеводороды с близкими температурами кипения. Таким образом отделяют от нефти фракцию от начала кипения до 80 °С, или н. к. - 80 °С, как это принято писать в литературе по нефтепереработке. Если продолжить нагрев и поднять температуру в кубе еще на 25 °С, то от нефти, отделится следующая фракция - углеводороды С 7, которые кипят в диапазоне 80 -105 °С. И так далее, вплоть до температуры 350 °С. Выше этого предела температуру поднимать нежелательно, так как в остающихся углеводородах содержатся нестабильные соединения, которые при нагреве осмоляют нефть, разлагаются до углерода и могут закоксовать, забить смолой всю аппаратуру.

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов Разделение нефти на фракции проводят на установках первичной перегонки нефти с применением процессов нагрева, дистилляции ректификации конденсации охлаждения. Прямую перегонку осуществляют при атмосферном или несколько повышенном давлении, а остатков - под вакуумом. Атмосферные (AT) и вакуумные трубчатые установки (ВТ) строят отдельно друг от друга или комбинируют в составе одной установки (АВТ).

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов На современных нефтеперерабатывающих заводах вместо дробной перегонки в периодически работающих кубах, применяют ректификационные колонны. Над кубом, в котором нагревают нефть, присоединен высокий цилиндр, перегороженный множеством, ректификационных тарелок. Их конструкция такова, что поднимающиеся вверх пары нефтепродуктов, могут частично конденсироваться, собираться на этих тарелках и по мере накопления на тарелке жидкой фазы сливаться вниз через специальные сливные устройства. В то же время парообразные продукты продолжают пробулькивать через слой жидкости на каждой тарелке.

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов Температура в ректификационной колонне снижается от куба к самой последней, верхней тарелке. Если в кубе она 380 °С, то на верхней тарелке она должна быть не выше 35 -40 °С, чтобы сконденсировать и не потерять все углеводороды C 5, без которых товарный бензин не приготовить. Верхом колонны уходят несконденсировавшиеся углеводородные газы С 1 -С 4. Все, что может конденсироваться, остается на тарелках. Таким образом, достаточно сделать отводы на разной высоте, чтобы получать фракции перегонки нефти, каждая из которых кипит в заданных температурных пределах. Фракция имеет свое конкретное назначение и в зависимости от него может быть широкой или узкой, то есть выкипать в интервале двухсот или двадцати градусов.

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов На современных нефтеперерабатывающих заводах обычно работают атмосферные трубчатки или атмосферно-вакуумные трубчатки мощностью 6 - 8 миллионов тонн перерабатываемой нефти в год. Обычно на заводе две-три таких установки. Первая атмосферная колонна представляет собой сооружение диаметром, около 7 метров в нижней и 5 метров в верхней части. Высота колонны - 51 метр. По существу, это два цилиндра, поставленные один на другой. Другие колонны - это холодильники-конденсаторы, печи и теплообменники

2 Стадия: Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов С точки зрения затрат, чем более широкие фракции получаются в итоге, тем они дешевле. Поэтому нефть поначалу перегоняли на широкие фракции: бензиновая фракция (прямогонный бензин, 40 -50 -140 -150 °С). фракция реактивного топлива (140 -240 °С), дизельная (240 -350 °С). остаток перегонки нефти - мазут В настоящее время ректификационные колонны разделяют нефть на более узкие фракции. И чем более узкие фракции хотят получить, тем выше должны быть колонны. Тем больше в них должно быть тарелок, тем больше раз одни и те же молекулы должны, поднимаясь вверх с тарелки на тарелку, перейти из газовой фазы в жидкую и обратно. Для этого нужна энергия. Ее подводят к кубу колонны в виде пара или топочных газов.

3 Стадия: крекинг нефтяных фракций Кроме обессоливания, обезвоживания и прямой перегонки на многих нефтезаводах есть еще одна операция переработки - вторичная перегонка. Задача этой технологии - получить узкие фракции нефти для последующей переработки. Продуктами вторичной перегонки обычно являются бензиновые фракции, служащие для получения автомобильных и авиационных топлив, а также в качестве сырья для последующего получения ароматических углеводородов - бензола, толуола и других.

3 Стадия: крекинг нефтяных фракций Типовые установки вторичной перегонки и по своему виду, и по принципу действия очень похожи на агрегаты атмосферной трубчатки, только их размеры гораздо меньше. Вторичная перегонка завершает первую стадию переработки нефти: от обессоливания до получения узких фракций. На 3 стадии переработки нефти в отличие от физических процессов перегонки, происходят глубокие химические преобразования.

3 Стадия: термический крекинг нефтяных фракций Одна из самых распространенных технологий этого цикла - крекинг (от английского слова cracking – расщепление) Крекинг – это реакции расщепления углеродного скелета крупных молекул при нагревании и в присутствии катализаторов. При термическом крекинге происходят сложные рекомбинации осколков разорванных молекул с образованием более легких углеводородов. Под воздействием высокой температуры длинные молекулы, например алканов С 20, расщепляются на более короткие - от С 2 до С 18. (Углеводороды С 8 - С 10 - это бензиновая фракция, С 15 – дизельная) Протекают также реакции циклизации и изомеризации углеводородов нефти

3 Стадия: термический крекинг нефтяных фракций Технологии крекинга позволяют увеличивать выход светлых нефтепродуктов с 40 -45% до 55 -60%. Из этих нефтепродуктов изготавливают бензин, керосин, дизельное топливо (соляр)

3 Стадия: каталитический крекинг нефтяных фракций Каталитический крекинг был открыт в 30 -е годы 20 в. , когда заметили, что контакт с некоторыми природными алюмосиликатами меняет химический состав продуктов термического крекинга. Дополнительные исследования привели к двум важным результатам: 1. установлен механизм каталитических превращений; 2. поняли, что необходимо специально синтезировать цеолитные катализаторы, а не искать их в природе.

3 Стадия: каталитический крекинг нефтяных фракций Механизм каталитического крекинга: катализатор сорбирует на себе молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород; образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора; по мере увеличения концентрации непредельных соединений происходит их полимеризация, появляются смолы - предшественницы кокса, а затем и сам кокс;

3 Стадия: каталитический крекинг нефтяных фракций высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др. , в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными - изоалканами, аренами, алкиларенами с температурами кипения 80 – 195 °С (это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинг тяжелого сырья).

3 Стадия: каталитический крекинг нефтяных фракций Типичные параметры каталитического крекинга при работе на вакуум-дистилляте (фр. 350 - 500 °С): температура 450 - 480 °С давление 0, 14 - 0, 18 МПа. Мощность современных установок в среднем - от 1, 5 до 2, 5 млн тонн, однако на заводах ведущих мировых компаний существуют установки мощностью и 4, 0 млн. тонн. В итоге получают углеводородные газы (20%), бензиновую фракцию (50%), дизельную фракцию (20%). Остальное приходится на тяжелый газойль или крекинг-остаток, кокс и потери.

3 Стадия: каталитический крекинг нефтяных фракций Микросферические катализаторы крекинга обеспечивают высокий выход светлых нефтепродуктов (68– 71 мас. %), в зависимости от марки катализатора.

Реакторный блок каталитического крекинга по технологии Exxon. Mobil. В правой части - реактор, слева от него - регенератор.

3 Стадия: Риформинг - (от англ. reforming - переделывать, улучшать) промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов. До 30 -х годов 20 века риформинг представлял собой разновидность термического крекинга и проводился при 540 о. С для получения бензина с октановым числом 70 -72.

3 Стадия: Риформинг С 40 -х годов риформинг - каталитический процесс, научные основы которого разработаны Н. Д. Зелинским, а также В. И. Каржевым, Б. Л. Молдавским. Впервые этот процесс был осуществлен в 1940 г в США. Его проводят в промышленной установке, имеющей нагревательную печь и не менее 3 -4 реакторов при температуре 350 -520 о. С, в присутствии различных катализаторов: платиновых и полиметаллических, содержащих платину, рений, иридий, германий и др. .

3 Стадия: Риформинг осуществляется под высоким давлением водорода, который циркулирует через нагревательную печь и реакторы. Эти каталитические превращения позволяют дегидрировать нафтеновые углеводороды в ароматические. Одновременно происходит дегидрирование алканов в соответствующие алкены, эти последние циклизуются тут же в циклоалканы, и с еще большей скоростью происходит дегидрирование циклоалканов в арены. Так, в процессе ароматизации типичное превращение следующее: н-гептан н-гептен метилциклогексан толуол. В результате риформинга бензиновых фракций нефти получают 80 -85 % бензин с октановым числом 90 -95, 1 -2% водорода и остальное количество газообразных углеводородов

4 Стадия: Гидроочистка – очистка нефтепродуктов от органических сернистых, азотистых и кислородных соединений при помощи молекул водорода. В результате гидроочистки повышается качество нефтепродуктов, снижается коррозия оборудования, уменьшается загрязнение атмосферы. Процесс гидроочистки приобрел очень большое значение в связи с вовлечением в переработку больших количеств сернистых и высокосернистых (более 1, 9% серы) видов нефти.

4 Стадия: Гидроочистка При обработке нефтепродуктов на гидрирующих катализаторах с использованием алюминиевых, кобальтовых и молибденовых соединений при давлении 4 - 5 МПа и температуре 380 - 420 °C. происходит несколько химических реакций: Водород соединяется с серой с образованием сероводорода (H 2 S). Некоторые соединения азота превращаются в аммиак. Любые металлы, содержащиеся в нефти, осаждаются на катализаторе. Некоторые олефины и ароматические углеводороды насыщаются водородом; кроме того, в некоторой степени идет гидрокрекинг нафтенов и образуется некоторое количество метана, этана, пропана и бутанов.

4 Стадия: Гидроочистка Сероводород в обычных условиях находится в газообразном состоянии и при нагревании нефтепродукта выделяется из него. Его поглощают водой в колоннах орошения и затем превращают либо в элементарную серу, либо в концентрированную серную кислоту. Содержание серы, особенно в светлых нефтепродуктах, можно свести до тысячных долей. Зачем доводить содержание примесей сероорганических веществ в бензине до такой жесткой нормы? Все дело в последующем использовании. Известно, например, что чем жестче режим каталитического риформинга, тем выше выход высокооктанового бензина при данном октановом числе или выше октановое число при данном выходе катализата. В результате увеличивается выход «октан-тонн» - так называется произведение количества катализата риформинга или любого другого компонента на его октановое число.

4 Стадия: Гидроочистка Нефтепереработчики в первую очередь заботятся об увеличении октан-тонн продукта по сравнению с сырьем Поэтому стараются ужесточить все вторичные процессы переработки нефти. В риформинге жесткость определяется снижением давления и повышением температуры. При этом полнее и быстрее идут реакции ароматизации. Но повышение жесткости лимитируется стабильностью катализатора и его активностью.

4 Стадия: Гидроочистка Сера, будучи каталитическим ядом, отравляет катализатор по мере ее накопления на нем. Отсюда понятно: чем меньше ее в сырье, тем дольше катализатор будет активным при повышении жесткости. Как в правиле рычага: проиграешь на стадии очистки - выиграешь на стадии риформинга. Обычно гидроочистке подвергают не всю, например, дизельную фракцию, а только ее часть, поскольку этот процесс достаточно дорог. Кроме того, у него есть еще один недостаток: эта операция практически не изменяет углеводородный состав фракций.

4 Стадия: СЕЛЕКТИВНАЯ ОЧИСТКА нефтепродуктов. осуществляется путем экстракции растворителями вредных примесей из нефтяных фракций для улучшения их физико-химических и эксплуатационных характеристик; один из главных технологических процессов производства смазочных масел из нефтяного сырья. Селективная очистка основана на способности полярных растворителей избирательно (селективно) растворять полярные или поляризуемые компоненты сырья полициклические ароматические углеводороды и высокомолекулярные смолисто-асфальтеновые вещества.

Владимир Хомутко

Время на чтение: 5 минут

А А

Современные технологии углубления переработки нефти

В стратегическом плане основными целями модернизации российской нефтепереработки являются:

  • максимизация производства топлив, отвечающих стандарту Евро-5;
  • минимизация при этом выхода мазута.

И как должна развиваться углубленная переработка нефти тоже понятно – необходимо строительство и введение в эксплуатацию новые конверсионные процессы, с целью увеличения их годовой мощности почти вдвое: с 72-х до 136-ти миллионов тонн.

К примеру, на предприятиях мирового лидера в нефтеперерабатывающей отрасли – США, доля углубляющих переработку процессов составляет более 55-ти процентов, а в нашей стране – только 17-ть.

Изменение этой ситуации возможно, но с помощью каких технологий? Применение классического набора процессов является долгим и весьма затратным путем. На современном этапе крайне необходимы самые эффективные технологии, которые можно было бы применить на каждом российском НПЗ. Поиск таких решений должен проводиться с учетом специфических свойств тяжелых нефтяных остатков, таких, как повышенное содержание асфальтеновых и смолистых веществ и высокий уровень коксуемости.

Именно эти свойства остатков косвенно подталкивают специалистов к тому, что классические технологии тяжелых остатков (например, коксование, деасфальтизация и термический крекинг) ограниченны в своих возможностях по отбору светлых дистиллятов, а значит, углубление переработки нефти с их помощью будет недостаточным.

Доступные современные технологии

Основные углубляющие технологии в основаны на процессе замедленного коксования гудронов, которые обеспечивают максимальный выход дистиллятов (от 60-ти до 80-ти процентов от общего объема перерабатываемого сырья). При этом получаемые фракции относятся к средним и газойлевым дистиллятам. Средние фракции отправляются на гидроочистку для получения дизельных топлив, а тяжелые газойлевые – подвергаются каталитической переработке.

Если взять такие страны, как Канада и Венесуэла, то в них уже больше двух десятилетий замедленное коксование применяется в качестве базового процесса промысловой переработки нефтей тяжелых сортов. Однако, для сырья с высоким содержанием серы коксование неприменимо по причинам экологического характера. Кроме того, вырабатываемый в колоссальных объемах высокосернистый кокс в качестве топлива эффективного применения не имеет, а подвергать его обессериванию – попросту нерентабельно.

России кокс плохого качества, тем более – в таких количествах, не нужен тоже. Кроме того, замедленное коксование является весьма энергоемким процессом, вредным с точки зрения экологии и нерентабельным при малых мощностях переработки. В связи с этими факторами, нужно найти другие углубляющие технологии.

Гидрокрекинг и газификация – самая дорогостоящая глубокая нефтепереработка, поэтому в ближайшее время они на российских НПЗ применяться не будут.

Поэтому и уделять им внимание мы в этой статье не станем. России необходимы наименее капиталоемкие, но достаточно эффективные конверсионные технологии.

Поиск таких технологических решений ведется давно, и основной задачей такого поиска является получение квалифицированных остаточных продуктов.

Таковыми являются:

  • высокоплавкий пек;
  • «жидкий кокс»;
  • различные марки битумов.

Кроме того, выход остатков должен быть минимален, чтобы его переработка с помощью коксования, газификации и гидрокрекинга было рентабельна.

Также одним из критериев выбора метода вторичной углубленной переработки остатков нефтяного сырья является получение востребованного качественного продукта без потери эффективности самой технологии. В нашей стране таким продуктом, вне всякого сомнения, является дорожный битум высокого качества, поскольку состояние российских дорог является извечной проблемой.

Поэтому, если удастся подобрать и реализовать эффективный процесс получения средних дистиллятов и остатков в виде качественных битумов – это даст возможность одновременно решить и проблему углубления нефтепереработки, и обеспечить дорожно-строительную отрасль высококачественным остаточным продуктом.

Среди таких технологических процессов, которые можно внедрить на российских перерабатывающих предприятиях, внимания достойны следующие методики:

Это – широко известный технологический процесс, используемый в производстве битумов и гудронов. Стоит сразу сказать, что примерно 80-90 процентов получаемых вакуумной мазутной перегонкой гудронов по своим качественным характеристикам не соответствуют требованиям, предъявляемым к товарным битумам, и необходима их дальнейшая переработка с помощью окислительных процессов.

Как правило, гудроны перед окислением подвергают дополнительному висбрекингу, с целью понизить значение вязкости получаемого котельного топлива, а также для уменьшения концентрации в битумном сырье трудноокисляемых парафинов.

Если говорить о получаемых с помощью этого процесса вакуумных газойлях, то для них характерны:

  • высокая плотность (больше 900 килограмм на кубический метр);
  • высокой степень вязкости;
  • высокие значения температур застывания (нередко – больше млюс тридцати – сорока градусов Цельсия).

Такие высоковязкие и, в основном, высокопарафинистые газойли по сути представляют собой полупродукты, которые необходимо подвергнуть дальнейшей каталитической переработке. Основная масса получаемых гудронов – это котельное топливо марки М-100.

Исходя из вышесказанного, вакуумная переработка мазута уже не удовлетворяет современные требования к процессам, которые призваны углубить нефтепереработку, вследствие чего в качестве базового процесса, способного кардинально увеличить ГПН, её рассматривать не стоит.

Пропановая деасфальтизация, как правило, используется для получения высокоиндексных масел.

Деасфальтизация гудронов при помощи бензина применяется в основном для выработки сырья, которое затем идет на производство битумов, хотя выделяемая при этом асфальтовая фаза далеко не всегда имеет свойства, необходимые для получения товарного битума нужного качества. В связи с этим получаемый асфальтит нужно дополнительно подвергать или окислению, или разбавлению масляной фазой.

Легкой фазой этого технологического процесса является деасфальтизат. Его показатели еще тяжелее, чем у вакуумного газойля:

  • значение плотности – более 920-ти килограммов на кубометр;
  • температура застывания – больше сорока градусов Цельсия;
  • большее значение вязкости.

Все это требует дополнительной каталитической переработки. Кроме того, деасфальтизат, в силу своей высокой вязкости, очень трудно перекачивать.

Но самой большой проблемой деасфальтизации является высокая степень её энергоемкости, из-за чего размер капитальных вложений, по сравнению с вакуумной перегонкой, возрастает больше, чем в 2 раза.

Основная масса получаемого асфальтита требует дополнительной переработки с помощью конверсионных процессов: замедленного коксования или газификации.

В связи со всем сказанным выше, деасфальтизация также не отвечает основным требованиям к технологии, призванной одновременно углубить нефтепереработку и получить качественные дорожные битумы, поэтому в качестве эффективной технологии увеличения ГПН также не подходит.

Висбрекинг мазута

Этот техпроцесс переживает свое второе рождение и становится все более востребованным.

Если ранее висбрекинг применялся для понижения значения вязкости гудронов, то на современном этапе развития технологии он становится основным углубляющим нефтепереработку процессом. Практически все крупнейшие фирмы мира (Chioda, Shell, KBR, Foster Wuiller, UOP и так далее) за последнее время разработали сразу несколько оригинальных технологических решений.

Основными достоинствами этих современных термических процессов являются:

  • простота;
  • высокая степень надежности;
  • малая стоимость необходимого оборудования;
  • рост значения выхода средних дистиллятов, получаемых из тяжелых нефтяных остатков, на 40 – 60 процентов.

Кроме того, современный висбрекинг дает возможность получать качественные дорожные битумы и такое энергетическое топливо, как «жидкий кокс».

Например, такие крупные корпорации, как Chioda и Shell, отправляют тяжелые газойли (как вакуумные, так и атмосферные) в печи жесткого крекинга, что позволяет исключить выход фракций, температура кипения которых больше 370-ти градусов Цельсия. В получаемых продуктах остаются только бензиновые и дизельные дистилляты и очень тяжелый остаток, а вот тяжелых видов газойлей – нет совсем!

Технология «Висбрекинг – ТЕРМАКАТ»

Эта современная технология позволяет получить из перерабатываемого мазута от 88-ми до 93-х процентов дизельно-бензиновых дистиллятов.

При разработке технологии «Висбрекинг-ТЕРМАКАТ» удалось выйти на управление сразу двумя параллельно происходящими процессами: термодеструкцией и термополиконденсацией. При этом деструкция происходит в пролонгированном режиме, а термополиконденсация – в отложенном режиме.