За счет чего формируется магнитный момент. Kvant. Магнитный момент тока. Расчет движения магнитного момента в неоднородном поле

В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура , равным произведению силы тока в контуре на площадь контура (см. формулу (118.1)).

Единицей магнитного момента является ампер-метр в квадрате (). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 , обладает круговой контур радиуса 0,564 м () либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 обладает круговой контур радиуса 0,178 м () и т. д.

Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона на частоту вращения электрона по орбите: . Если радиус орбиты равен , а скорость электрона – , то и, следовательно, . Магнитный момент, соответствующий этому току,

Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта (рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении . Выбранная таким образом нормаль называется положительной. Направление вектора принимается совпадающим с направлением положительной нормали .

Рис. 211. Вращение головки винта в направлении тока вызывает перемещение винта в направлении вектора

Теперь мы можем уточнить определение направления магнитной индукции . За направление магнитной индукции принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор .

Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856-1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.

Из формулы (118.2) следует, что

119.1. Круговой контур радиуса 5 см, по которому течет ток силы 0,01 А, испытывает в однородном магнитном поле максимальный вращающий момент, равный Н×м. Какова магнитная индукция этого поля?

119.2. Какой вращающий момент действует на тот же контур, если нормаль к контуру образует с направлением поля угол 30°?

119.3. Найдите магнитный момент тока, создаваемого электроном, движущимся по круговой орбите радиуса м со скоростью м/с. Заряд электрона равен Кл.

Любых веществ. Источником формирования магнетизма, как утверждает классическая электромагнитная теория, являются микротоки, возникающие вследствие движения электрона по орбите. Магнитный момент - это непременное свойство всех без исключения ядер, атомных электронных оболочек и молекул.

Магнетизм, который присущ всем элементарным частицам, согласно обусловлен наличием у них механического момента, называемого спином (собственным механическим импульсом квантовой природы). Магнитные свойства атомного ядра складываются из спиновых импульсов составных частей ядра - протонов и нейтронов. Электронные оболочки (внутриатомные орбиты) тоже имеют магнитный момент, который составляет сумма магнитных моментов находящихся на ней электронов.

Иначе говоря, магнитные моменты элементарных частиц и обусловлены внутриатомным квантомеханическим эффектом, известным как спиновой импульс. Данный эффект аналогичен угловому моменту вращения вокруг собственной центральной оси. Спиновой импульс измеряется в постоянной Планка - основной константе квантовой теории.

Все нейтроны, электроны и протоны, из которых, собственно, и состоит атом, согласно Планку, обладают спином, равным ½ . В структуре атома электроны, вращаясь вокруг ядра, помимо спинового импульса, имеют еще и орбитальный угловой момент. Ядро, хоть и занимает статичное положение, тоже обладает угловым моментом, который создается эффектом ядерного спина.

Магнитное поле, которое генерирует атомный магнитный момент, определяется различными формами этого углового момента. Наиболее заметный вклад в создание вносит именно спиновой эффект. По принципу Паули, согласно которому два тождественных электрона не могут пребывать одновременно в одинаковом квантовом состоянии, связанные электроны сливаются, при этом их спиновые импульсы приобретают диаметрально противоположные проекции. В этом случае магнитный момент электрона сокращается, что уменьшает магнитные свойства всей структуры. В некоторых элементах, имеющих четное число электронов, этот момент уменьшается до нулевой отметки, и вещества перестают обладать магнитными свойствами. Таким образом, магнитный момент отдельных элементарных частиц оказывает непосредственное влияние на магнитные качества всей ядерно-атомной системы.

Ферромагнитные элементы с нечетным количеством электронов всегда будут обладать ненулевым магнетизмом за счет непарного электрона. В таких элементах соседние орбитали перекрываются, и все спиновые моменты непарных электронов принимают одинаковую ориентацию в пространстве, что приводит к достижению наименьшего энергетического состояния. Этот процесс называется обменным взаимодействием.

При таком выравнивании магнитных моментов ферромагнитных атомов возникает магнитное поле. А парамагнитные элементы, состоящие из атомов с дезориентированными магнитными моментами, не имеют собственного магнитного поля. Но если воздействовать на них внешним источником магнетизма, то магнитные моменты атомов выровняются, и эти элементы тоже приобретут магнитные свойства.

Опыты Штерна и Герлаха

В $1921$ г. О. Штерн выдвинул идею опыта измерения магнитного момента атома. Данный эксперимент он выполнил в соавторстве с В. Герлахом в $1922$ г. Метод Штерна и Герлаха использует то, что пучок атомов (молекул) способен отклоняться в неоднородном магнитном поле. Атом, который имеет магнитный момент можно представить как элементарный магнит, имеющий малые, но конечные размеры. Если подобный магнит разместить в однородном магнитном поле, то он не испытывает силы. Поле будет действовать на северный и южный полюса такого магнита с силами, которые равны по модулю и противоположны по направлению. В результате, центр инерции атома будет покоиться или двигаться по прямой. (При этом ось магнита может совершать колебания или прецессировать). То есть, в однородном магнитном поле не возникает сил, которые действуют на атом и сообщают ему ускорение. Однородное магнитное поле не изменяет угол между направлениями индукции магнитного поля и магнитного момента атома.

Ситуация складывается иначе, если внешнее поле является неоднородным. В таком случае силы, которые действуют на северный и южный полюса магнита не равны. Результирующая сила, действующая на магнит отлична от нуля, и она сообщает атому ускорение, по полю или против него. Как результат, при перемещении в неоднородном поле рассматриваемый нами магнит отклонится от первоначального направления движения. При этом размер отклонения зависит от степени неоднородности поля. Для того, чтобы получить существенные отклонения поле должно резко изменяться уже в пределах длины магнита (линейные размеры атома $\approx {10}^{-8}см$). Такой неоднородности экспериментаторы добились с помощью конструкции магнита, который создавал поле. Один магнит в опыте имел вид лезвия, другой был плоским или обладал выемкой. Магнитные линии сгущались у «лезвия», так что напряженность в этой области была существенно больше, чем у плоского полюса. Тонкий пучок атомов пролетал между данными магнитами. Отдельные атомы отклонялись в созданном поле. Следы отдельных частиц наблюдались на экране.

Согласно представлениям классической физики в атомном пучке магнитные моменты имеют различные направления по отношению к некоторой оси $Z$. Что означает: проекция магнитного момента ($p_{mz}$) на данную ось принимает все значения интервала от $\left|p_m\right|$ до -$\left|p_m\right|$ (где $\left|p_{mz}\right|-$ модуль магнитного момента). На экране пучок должен получиться расширившимся. Однако, в квантовой физике, если учесть квантование, то возможными становятся не все ориентации магнитного момента, а только конечное их количество. Так, на экране след пучка атомов получался расщепленным на некоторое число отдельных следов.

Поставленные эксперименты показали, что например, пучок атомов лития расщепился на $24$ пучка. Это является обоснованным, так как основной термом $Li - 2S$ -- терм (один валентный электрон, имеющий спин $\frac{1}{2}\ $ на s --орбите, $l=0).$ По размерам расщепления можно сделать вывод о величине магнитного момента. Так Герлах получил доказательство того, что спиновый магнитный момент равен магнетону Бора. Исследования разных элементов показали полное согласование с теорией.

Штерн и Раби измерили магнитные моменты ядер, применяя данный подход.

Итак, если проекция $p_{mz}$ квантована, вместе с ней квантована средняя сила, которая действует на атом со стороны магнитного поля. Опыты Штерна и Герлаха доказали квантование проекции магнитного квантового числа на ось $Z$. Получилось, что магнитные моменты атомов направлены параллельно оси $Z$, под углом к данной оси они направлены быть не могут, так пришлось принять то, что ориентация магнитных моментов относительно магнитного поля изменяется дискретно. Данное явление было названо пространственным квантованием. Дискретность не только состояния атомов, но и ориентировок магнитных моментов атома во внешнем поле -- принципиально новое свойство перемещения атомов.

Полностью опыты были объяснены после открытия спина электрона , когда получили то, что магнитный момент атома вызван не орбитальным моментом электрона, а внутренним магнитным моментом частицы, который связан с его внутренним механическим моментом (спином).

Расчет движения магнитного момента в неоднородном поле

Пусть атом движется в неоднородном магнитном поле, его магнитный момент равен ${\overrightarrow{p}}_m$. На него действует сила:

Вцелом, атом является электрически нейтральной частицей, поэтому другие силы на него в магнитном поле не действуют. Исследуя движение атома в неоднородном поле можно измерить его магнитный момент. Допустим, что атом перемещается по оси $X$, неоднородность поля создана в направлении оси $Z$ (рис.1):

Рисунок 1.

\frac{}{}\frac{}{}

Используя условия (2) выражение (1) преобразуем к виду:

Магнитное поле симметрично относительно плоскости y=0. Можно предположить, что атом перемещается в данной плоскости, значит $B_x=0.$ Равенство $B_y=0$ нарушается только в небольших областях у краев магнита (этим нарушением пренебрегаем). Из выше сказанного следует, что:

В таком случае выражения (3) имеют вид:

Прецессия атомов в магнитном поле не влияет на $p_{mz}$. Уравнение движения атома в пространстве между магнитами запишем в виде:

где $m$ -- масса атома. Если атом проходит путь $a$ между магнитами, то он отклоняется от оси X на расстояние, равное:

где $v$ -- скорость атома по оси $X$. Уходя из пространства между магнитами атом продолжает перемещаться под неизменным по отношению к оси $X$ углом по прямой. В формуле (7) величины $\frac{\partial B_z}{\partial z}$, $a$, $v\ и\ m$ известны, измерив z можно сосчитать $p_{mz}$.

Пример 1

Задание: На сколько компонент, при проведении опыта аналогичного опыту Штерна и Герлаха, произойдёт расщепление пучка атомов, если они находятся в состоянии ${}^3{D_1}$?

Решение:

Терм расщепляется на $N=2J+1$ подуровней, если множитель Ланде $g\ne 0$, где

Для нахождения числа компонент, на которое расщепится пучок атомов, нам следует определить полное внутреннее квантовое число $(J)$, мультиплетность $(S)$, орбитальное квантовое число, сравнить множитель Ланде с нулем и если он отличен от нуля, то вычислить число подуровней.

1) Для этого рассмотрим структуру символической записи состояния атома ($3D_1$). Наш терм расшифруется следующим образом: символу $D$ соответствует орбитальное квантовое число $l=2$, $J=1$, мультиплетность $(S)$ равна $2S+1=3\to S=1$.

Вычислим $g,$ применив формулу (1.1):

Количество компонент, на которые расщепится пучок атомов, равен:

Ответ: $N=3.$

Пример 2

Задание: Почему в опыте Штерна и Герлаха по обнаружению спина электрона применяли пучок атомов водорода, которые находились в $1s$ состоянии?

Решение:

В $s-$ состоянии момент импульса электрона $(L)$ равен нулю, так как $l=0$:

Магнитный момент атома, который связан с движением электрона по орбите, пропорционален механическому моменту:

\[{\overrightarrow{p}}_m=-\frac{q_e}{2m}\overrightarrow{L}(2.2)\]

следовательно, равен нулю. Это означает, что магнитное поле не должно влиять на перемещение атомов водорода в основном состоянии, то есть расщеплять поток частиц. Но при использовании спектральных приборов было показано, что линии спектра водорода проявляют наличие тонкую структуру (дублеты) даже если магнитного поля нет. Для того, чтобы объяснить наличие тонко структуры и была выдвинута идея собственного механического момента импульса электрона в пространстве (спина).

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

Здесь В - вектор индукции магнитного поля, - ток в рамке, S - ее площадь и а - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение , которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор , перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля В. Маленькую рамку с током можно использовать в качестве простейшего «измерительного прибора» для определения вектора индукции магнитного поля.

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса г.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов :

Следовательно, величина магнитного момента электрона равна:

Можно выразить через величину момента импульса электрона . Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике.

Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель , характеризующий состояние атома:

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.

Можно доказать, что вращающий момент М, действующий на контур с током I в однородном поле, прямо пропорционален площади обтекаемой током, силе тока и индукции магнитного поля В. Кроме того, вращающий момент М зависит от положения контура относительно поля. Максимальный вращающий момент Миакс получается, когда плоскость контура параллельна линиям магнитной индукции (рис. 22.17), и выражается формулой

(Докажите это, используя формулу (22.6а) и рис. 22.17.) Если обозначить то получим

Величину , характеризующую магнитные свойства контура с током, которые определяют его поведение во внешнем магнитном поле, называют магнитным моментом этого контура. Магнитный момент контура измеряется произведением силы тока в нем на площадь, обтекаемую током:

Магнитный момент есть вектор, направление которого определяется правилом правого винта: если винт поворачивать по направлению тока в контуре, то поступательное движение винта покажет направление вектора (рис. 22.18, а). Зависимость вращающего момента М от ориентации контура выражается формулой

где а - угол между векторами и В. Из рис. 22.18, б видно, Что равновесие контура в магнитном поле возможно тогда, когда векторы В и Рмаг направлены по одной прямой. (Подумайте, в каком случае это равновесие будет устойчивым.)