Как находится абсолютная погрешность. Измерение физических величин

3.1 Среднеарифметическая погрешность. Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

Средней абсолютной ошибкой называется среднеарифметическое модулей абсолютных ошибок отдельных измерений:

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность a ср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для а ср оставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с 2 .



Относительная погрешность. Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностью или просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность. Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность метода или приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точности прибора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

(10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измерений можно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

(11)
(12)

Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x 1 ,x 2 ,…,х n) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dх i ≈ dx i , и вы­ражения (11) и (12), для бесконечно малых приращений можно записать:

(13)
(14)

Здесь: а - косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, - абсолютная ошибка ее измерения, х 1 , х 2 ,...х n ; Dх 1, Dx 2 ,..., Dх n , - физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

Например, плотность тела цилиндрической формы вычисляется по формуле:

(16)

где m, D, h - измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

3. Дифференцируем:

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h , рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D 1 и внешним диаметром D 2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 - 4 значащих цифры, а в числе 6,1×10 2 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).

Истинное значение физической величины определить абсолютно точно практически невозможно, т.к. любая операция измерения связана с рядом ошибок или, иначе, погрешностей. Причины погрешностей могут быть самыми различными. Их возникновение может быть связано с неточностями изготовления и регулировки измерительного прибора, обусловлено физическими особенностями исследуемого объекта (например, при измерении диаметра проволоки неоднородной толщины результат случайным образом зависит от выбора участка измерений), причинами случайного характера и т.д.

Задача экспериментатора заключается в том, чтобы уменьшить их влияние на результат, а также указать, насколько полученный результат близок к истинному.

Существуют понятия абсолютной и относительной погрешности.

Под абсолютной погрешностью измерений будет понимать разницу между результатом измерения и истинным значением измеряемой величины:

∆x i =x i -x и (2)

где ∆x i – абсолютная погрешность i-го измерения, x i _- результат i-го измерения, x и – истинное значение измеряемой величины.

Результат любого физического измерения принято записывать в виде:

где – среднее арифметическое значение измеряемой величины, наиболее близкое к истинному значению (справедливость x и≈ будет показана ниже), - абсолютная ошибка измерений.

Равенство (3) следует понимать таким образом, что истинное значение измеряемой величины лежит в интервале [ - , + ].

Абсолютная погрешность – величина размерная, она имеет ту же размерность, что и измеряемая величина.

Абсолютная погрешность не полностью характеризует точность произведенных измерений. В самом деле, если мы измерим с одной и той же абсолютной ошибкой ± 1 мм отрезки длиной 1 м и 5 мм, точность измерений будут несравнимы. Поэтому, наряду с абсолютной погрешностью измерения вычисляется относительная погрешность.

Относительной погрешностью измерений называется отношение абсолютной погрешности к самой измеряемой величине:

Относительная погрешность – величина безразмерная. Она выражается в процентах:

В приведенном выше примере относительные ошибки равны 0,1% и 20%. Они заметно различаются между собой, хотя абсолютные значения одинаковы. Относительная ошибка дает информацию о точности

Погрешности измерений

По характеру проявления и причинам появления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные, и промахи (грубые ошибки).

П р о м а х и обусловлены либо неисправностью прибора, либо нарушением методики или условий эксперимента, либо имеют субъективный характер. Практически они определяются как результаты резко отличающиеся от других. Для устранения их появления требуется соблюдать аккуратность и тщательность в работе с приборами. Результаты, содержащие промахи, необходимо исключать из рассмотрения (отбрасывать).

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одной и той же величины.


Похожая информация.


В процессе измерения чего-либо нужно учитывать, что полученный результат еще неконечный. Чтобы более точно высчитать искомую величину, необходимо учитывать погрешность. Высчитать ее достаточно просто.

Как найти погрешность – вычисление

Разновидности погрешностей:

  • относительная;
  • абсолютная.

Что нужно для вычисления:

  • калькулятор;
  • результаты нескольких измерений одной величины.

Как найти погрешность – последовательность действий

  • Измерьте величину 3 – 5 раз.
  • Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
  • Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
  • Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
  • Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
  • Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
  • Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.


Погрешности измерений возникают по различным причинам и влияют на точность полученного значения. Зная, чему равна погрешность, можно узнать более точное значение проведенного измерения.

При прямых измерениях

1. Пусть на вольтметре однократно измерены два напряжения U 1 = 10 В, U 2 = 200 В. Вольтметр имеет следующие характеристики: класс точности d кл т = 0,2, U max = 300 В.

Определим абсолютную и относительную погрешности этих измерений.

Так как оба измерения произведены на одном приборе, то DU 1 = DU 2 и вычисляются по формуле (В.4)

Согласно определению относительные погрешности U 1 и U 2 соответственно равны

ε 1 = 0,6 ∙ В / 10 В = 0,06 = 6 %,

ε 2 = 0,6 ∙ В / 200 В = 0,003 = 0,3 %.

Из приведенных результатов вычислений ε 1 и ε 2 видно, что ε 1 значительно больше ε 2 .

Отсюда вытекает правило: следует выбирать прибор с таким пределом измерений, чтобы показания были в последней трети шкалы.

2. Пусть некоторая величина измерена многократно, то есть произведено n отдельных измерений этой величины А х 1 , А х 2 ,..., А х 3 .

Тогда для вычисления абсолютной погрешности производят следующие операции:

1) по формуле (В.5) определяют среднее арифметическое значение А 0 измеряемой величины;

2) вычисляют сумму квадратов отклонений отдельных измерений от найденного среднего арифметического и по формуле (В.6) определяют среднюю квадратическую погрешность, которая и характеризует абсолютную погрешность единичного измерения при многократных прямых измерениях некоторой величины;

3) относительная погрешность ε вычисляется по формуле (В.2).

Вычисление абсолютной и относительной погрешности

При косвенном измерении

Вычисление погрешностей при косвенных измерениях – более сложная задача, так как в этом случае искомая величина является функцией других вспомогательных величин, измерение которых сопровождается появлением погрешностей. Обычно при измерениях, если не считать промахов, случайные погрешности оказываются весьма малыми по сравнению с измеряемой величиной. Они настолько малы, что вторые и более высокие степени погрешностей лежат за пределами точностей измерений и ими можно пренебречь. Из-за малости погрешностей для получения формулы погрешности
косвенно измеряемой величины применяют методы дифференциального исчисления. При косвенном измерении величины, когда непосредственно измеряются величины, связанные с искомой некоторой мaтематической зависимостью, удобнее вначале определить относительную погрешность и уже
через найденную относительную погрешность вычислять абсолютную погрешность измерения.

Дифференциальное исчисление дает наиболее простой способ определения относительной погрешности при косвенном измерении.

Пусть искомая величина А связана функциональной зависимостью с несколькими независимыми непосредственно измеряемыми величинами x 1 ,
x 2 , ..., x k , т. е.

A = f (x 1 , x 2 , ..., x k ).

Для определения относительной погрешности величины А берется натуральный логарифм от обеих частей равенства

ln A = ln f (x 1 , x 2 , ..., x k ).

Затем вычисляется дифференциал натурального логарифма функции
A = f (x 1 ,x 2 , ..., x k ),

dlnA = dlnf (x 1 , x 2 , ..., x k )

В полученном выражении производятся все возможные алгебраические преобразования и упрощения. После этого все символы дифференциалов d заменяются на символы погрешности D, причем отрицательные знаки перед дифференциалами независимых переменных заменяются положительными, т. е. берется наиболее неблагоприятный случай, когда все погрешности складываются. В этом случае вычисляется максимальная погрешность результата.

С учетом вышесказанного

но ε = D А / А

Данное выражение является формулой относительной погрешности величины А при косвенных измерениях, оно определяет относительную погрешность искомой величины, через относительные погрешности, измеряемых величин. Вычислив по формуле (В.11) относительную погрешность,
определяют абсолютную погрешность величины А как произведение относительной погрешности на рассчитанное значение А т. е.

DА = εА , (В.12)

где ε выражено безразмерным числом.

Итак, относительную и абсолютную погрешности косвенно измеряемой величины следует рассчитать в такой последовательности:

1) берется формула, по которой рассчитывается искомая величина (расчетная формула);

2) берется натуральный логарифм от обеих частей расчетной формулы;

3) вычисляется полный дифференциал натурального логарифма искомой величины;

4) в полученном выражении производятся все возможные алгебраические преобразования и упрощения;

5) символ дифференциалов d заменяется на символ погрешности D, при этом все отрицательные знаки перед дифференциалами независимых переменных заменяются на положительные (величина относительной погрешности будет максимальной) и получается формула относительной погрешности;

6) рассчитывается относительная погрешность измеряемой величины;

7) по рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12).

Рассмотрим несколько примеров расчета относительной и абсолютной погрешностей при косвенном измерении.

1. Искомая величина А связана с непосредственно измеряемыми величинами х , у , z соотношением

где a и b – постоянные величины.

2. Возьмем натуральный логарифм от выражения (В.13)

3. Вычислим полный дифференциал натурального логарифма искомой величины А , то есть дифференцируем (В.13)

4. Производим преобразования. Учитывая, что dа = 0, так как а = const, cos у /sin y = ctg y , получаем:

5. Заменим символы дифференциалов символами погрешностей и знак «минус» перед дифференциалом на знак «плюс»

6. Рассчитываем относительную погрешность измеряемой величины.

7. По рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12), т. е.

Определяется длина волны желтого цвета спектральной линии ртути при помощи дифракционной решетки (используя принятую последовательность вычисления относительной и абсолютной погрешностей для длины волны желтого цвета).

1. Длина волны желтого цвета в этом случае определяется по формуле:

где С – постоянная дифракционной решетки (косвенно измеряемая величина); φ ж – угол дифракции желтой линии в данном порядке спектра (непосредственно измеряемая величина); K ж – порядок спектра, в котором производилось наблюдение.

Постоянная дифракционной решетки вычисляется по формуле

где K з – порядок спектра зеленой линии; λ з – известная длина волны зеленого цвета (λ з – постоянная); φ з – угол дифракции зеленой линии в данном порядке спектра (непосредственно измеряемая величина).

Тогда с учетом выражения (В.15)

(В.16)

где K з, K ж – наблюдаемые, которые считаются постоянными; φ з, φ ж – являют-
ся непосредственно измеряемыми величинами.

Выражение (В.16) – расчетная формула длины волны желтого цвета, определяемой при помощи дифракционной решетки.

4. dK з = 0; dK ж = 0; dλ з = 0, так как K з, K ж и λ з – постоянные величины;

Тогда

5. (В.17)

где Dφ ж, Dφ з – абсолютные погрешности измерения угла дифракции желтой
и зеленой линий спектра.

6. Рассчитываем относительную погрешность длины волны желтого цвета.

7. Вычисляем абсолютную погрешность длины волны желтого цвета:

Dλ ж = ελ ж.